
Assignment 2– Symbolic Execution Playground

HSS
Fall 2024

In this part, you will be building a dynamic symbolic executor for C programs with LLVM and
Z3.
Logistics:

� LLVM Primer: Please make sure that you have skimmed the LLVM Primer presentation
(access it from the course webpage) to know the capabilities of LLVM.

� Setup Repo: I have created a github repo with all the necessary scripts to install
LLVM, Z3 and starter code to write a pass. You can access it at: https://github.com/
HolisticSoftwareSecurity/hssllvmsetup. The repo has examples of analysis (i.e., the
passes that do not modify the IR) and instrumentation (i.e., the passes that modify the
IR) passes.

� Development Environment: I use CLion (https://www.jetbrains.com/clion/) while
working with LLVM and strongly suggest you to use it. You can get unlimited access using
your @purdue.edu email.

In this part, you will implement a dynamic symbolic execution (DSE) engine that automat-
ically generates inputs to efficiently explore different program paths. You will use an LLVM
pass to encode C programs into our symbolic interpretation API that we have provided. The
resulting tool will find assignments for input variables that crash an input C program.

Setup

The skeleton code for this part is located under LLVMBasedDSE folder of the following repo. We
will frequently refer to this top level directory as dse when describing file locations for the lab.
Clone the repository to a folder:

$ cd

$ git clone https://github.com/HolisticSoftwareSecurity/DynamicSymbolicExecution.git

remote: Enumerating objects: 19, done.

remote: Counting objects: 100% (19/19), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 14 (delta 11), reused 11 (delta 8), pack-reused 0

Unpacking objects: 100% (14/14), done.

Then, run the following commands setup the lab:

$ cd ~/DynamicSymbolicExecution/LLVMBasedDSE

$ mkdir build && cd build

$ cmake ..

$ make

$ export LD_LIBRARY_PATH=~/DynamicSymbolicExecution/LLVMBasedDSE/build/DSE:$LD_LIBRARY_PATH

1

Assignment 2 Symbolic Execution Playground HSS

The export LD_LIBRARY_PATH command should be run on each terminal session you begin. You
should now see dse and libInstrumentPass.so in the current directory LLVMBasedDSE/build/DSE.

dse is a tool that performs dynamic symbolic execution on an input program using Z3. You
can run the dse program with the following commands:

$ cd ~/DynamicSymbolicExecution/LLVMBasedDSE/DSE

$ cd test

$ clang -emit-llvm -S -fno-discard-value-names -c simple0.c

$ opt -load ../../build/DSE/libInstrumentPass.so -Instrument -S simple0.ll -o simple0.instrumented.ll

$ clang -o simple0 -L../../build/DSE -lruntime simple0.instrumented.ll

$../../build/DSE/dse ./simple0 N # where N is the number of iterations

$ timeout 10 ../../build/DSE/dse ./simple0 # run for 10 seconds

Initially, you will see formula.smt2 not found since you have not implemented the instrumen-
tation part yet.

Lab Instructions

Dynamic symbolic execution (DSE) uses techniques from both randomized testing and symbolic
execution to search all of a program’s execution paths for bugs. DSE tracks both runtime values
and symbolic constraints, and uses the former to simplify solving the latter during a backtracking
search on program computation trees.

We have provided the backbone for a symbolic interpreter using Z3 1. You will need to
encode a C program into this symbolic interpreter API as well as write the code that drives
the dynamic symbolic execution. We provide several details on how to do this in the following
sections.

This lab assumes that input programs only have integer variables (no pointers or other types
of variables) and do not have functions (no CallInstr).

Understanding Z3. Z3 is a theorem prover developed at Microsoft. It’s a large and complex
tool, so this will serve as a cursory guide for its capabilities and what it can do. Consider a
simple, generic system of equations such as the following, where X and Y are integers:

X < Y

X > 2

Although this example is trivial, think about how you might solve this using any program-
ming language of your choice. You may resort to using loops to check numbers or finding a
library to handle matrix multiplication. This is because most of these programming languages
are imperatively-directed, meaning there’s a sequence of commands needed to solve the problem.

On the other hand, Z3 has a declarative interface, which in this case means all you need to
give it is the list of constraints (in this case, X < Y and X > 2). Plug the following into the online
Z3 solver 2 to see the results:

(declare-const x Int)

(declare-const y Int)

(assert (< x y))

(assert (> x 2))

(check-sat)

(get-model)

1https://github.com/Z3Prover/z3
2https://rise4fun.com/Z3/tutorial/guide

2

Assignment 2 Symbolic Execution Playground HSS

Z3 may not give you all possible results that match the constraints but importantly, it verifies
satisfiability, which is the key factor that will be leveraged for this DSE engine.

If you’re curious about Z3 and want more information, you can check out the following
resources:

� https://github.com/Z3Prover/z3/wiki/Documentation

� https://github.com/Z3Prover/z3/blob/master/examples/c%2B%2B/example.cpp

� https://theory.stanford.edu/~nikolaj/programmingz3.html

Part 1: LLVM Instrumentation

The first component of this dynamic symbolic execution implementation is instrumentation of
the input program, which is done in src/Instrument.cpp. This follows the familiar format
and pattern seen in prior labs, except now this LLVM pass will inject various functions de-
fined in src/Runtime.cpp, accompanied with the appropriate metadata from each valid LLVM
Instruction. This will enable DSE to interact with Z3 at runtime. Specifically, these are the
functions that will require instrumentation (from include/Instrument.h):

static const char *DSEInitFunctionName = "__DSE_Init__";

static const char *DSEAllocaFunctionName = "__DSE_Alloca__";

static const char *DSEStoreFunctionName = "__DSE_Store__";

static const char *DSELoadFunctionName = "__DSE_Load__";

static const char *DSEConstFunctionName = "__DSE_Const__";

static const char *DSERegisterFunctionName = "__DSE_Register__";

static const char *DSEICmpFunctionName = "__DSE_ICmp__";

static const char *DSEBranchFunctionName = "__DSE_Branch__";

static const char *DSEBinOpFunctionName = "__DSE_BinOp__";

Symbolic Inputs. The skeleton code provides an auxiliary function called DSE_Input for
a user to specify symbolic inputs. In target programs, you should first include the header
file include/Runtime.h to use the function. In the following example code, the dynamic symbolic
execution engine will treat variable x and y to have symbolic inputs and z to have a concrete
value 0:

#include \../include/Runtime.h"

int main() {

int x, y, z;

DSE_Input(x);

DSE_Input(y);

z = 0;

...

}

Note that DSE_Input is a macro and will be expanded with a unique ID. See include/Runtime.h
and src/SymbolicInterpreter.cpp for details.

Initially, the DSE engine will assign random numbers to the input variables. After each
iteration of DSE, new inputs are generated and stored in file input.txt in the form of comma-
separated values (CSV). The file will have a mapping from IDs to their integer values. The
following is an example of the symbolic mapping X0 : 1, X1 : 10:

X0,1

X1,10

3

Assignment 2 Symbolic Execution Playground HSS

If there exists an input.txt file, target programs instrumented with the methodologies below
will use the integer values for inputs rather than random numbers.
Instrumentation for DSE Initialization. You will first instrument the input program to in-
voke a function __DSE__Init__ at the beginning of main. The skeleton code provides the definition
of __DSE__Init__ in src/SymbolicInterpreter.cpp. The function initializes inputs if input.txt
exists and registers a callback function __DSE_Exit__ which will be invoked when the target pro-
gram is terminated normally. The skeleton code also provides the definition of __DSE_Exit__ that
stores a list of covered branches (in branch.txt), path formula (in formula.smt2), and logs
(in log.txt). In short, your instrumentation module should transform the code in the left to
the right:

define dso_local i32 @main() #0 {

entry:

%retval = alloca i32, align 4

...

define dso_local i32 @main() #0 {

entry:

call void DSE Init ();

%retval = alloca i32, align 4

...

Instrumentation for IR instructions. You will next instrument the remaining IR instruc-
tions. In general, each operand in an instruction should be instrumented if it changes any-
thing in the symbolic memory state. Constants are instrumented with the __DSE_Const__ func-
tion and registers are instrumented with the __DSE_Register__ function (see the next section
for details). Additionally, the instrumented function calls for the Alloca instructions must ap-
pear after the instruction, whereas the instrumented function calls for all other instructions
must appear before the instruction. __DSE_ICmp__ and __DSE_BinOp__ take the ID of the register
in the left hand side as their first argument and its LLVM opcode (llvm::CmpInst::Predicate
and llvm::Instruction:: BinaryOps, respectively) as the second argument. We provide some ex-
ample instrumentations (the function calls are simplified for readability):

...

%x = alloca i32, align 4

...

...

%x = alloca i32, align 4

DSE Alloca (i32 1, i32* %x)

...

...

store i32 0, i32* %retval, align 4

...

...

DSE Const (i32 0)

DSE Store (i32* %retval)

store i32 0, i32* %retval, align 4

...

...

%cmp = icmp eq i32 %1, 1024

...

...

DSE Register (i32 5)

DSE Const (i32 1024)

DSE ICmp (i32 6, i32 32)

%cmp = icmp eq i32 %1, 1024

...

Part 2: Runtime Symbolic Interpretation

The second component of this lab involves writing the runtime symbolic interpretation functions
in src/Runtime.cpp. In previous labs, the instrumentation functions have been provided, but
this time you will be doing it yourself. When each of these functions get invoked at runtime, it
will change the symbolic memory state and path conditions. Here is where you’ll be using the
Z3 API to add constraints for the symbolic interpreter class.

Symbolic Interpretation for LLVM Instructions. You will define symbolic manipulation func-
tions for each LLVM instruction and instrument the input program to invoke these functions at

4

Assignment 2 Symbolic Execution Playground HSS

runtime. Following the real execution of the program, the DSE engine manipulates a symbolic
memory state. The SymbolicInterpreter class in include/SymbolicInterpreter.h maintains
symbolic memory which is defined as a map from symbolic addresses to symbolic expressions.
It also maintains a stack of symbolic expressions.

An instance of the Address class represents a symbolic memory address. A symbolic address
is either a memory address or a register, following the definition of LLVM IR. The Type field
denotes the type of address. For memory addresses (allocated via AllocaInstruction of LLVM),
we will use their physical addresses as symbolic addresses. For registers, we will assign unique
register IDs via getRegisterID() in Instrument.h. For symbolic expression, you will reuse Z3’s
expressions, which are instances of the z3::expr class.

Symbolic manipulation of concrete execution is performed using two auxiliary functions __DSE_Const__,
__DSE_Register__, each of which encodes concrete constants and registers to their symbolic counter
parts. The functions are defined in src/SymbolicInterpreter.cpp. Function __DSE_Const__

takes a constant integer of LLVM IR, makes a symbolic expression for the number, and pushes the
symbolic expression to a stack (the field Stack in class SymbolicInterpreter). Function __DSE_Register__

takes an ID of an LLVM register, and pushes its symbolic counterpart to the stack. Each element
of the stack is either a constant or a register. The symbolic expressions in the stack will be used
for the succeeding instrumented function.

You will define the symbolic manipulation functions for LLVM instructions using the auxil-
iary functions. Consider the following LLVM code equivalent to a simple C program int x = 1; int y = x;

(types are omitted for simplicity):

Instrumented Concrete Memory Stack Symbolic Memory
%x = alloca

DSE Alloca (0,%x)

%y = alloca

DSE Alloca (1,%y)

DSE Const (1)

DSE Store (%x)

store 1, %x

DSE Load (2,%x)

%a = load %x

DSE Register (2)

DSE Store (%y)

store %a, %y

%x : 0x1000

%y : 0x1004

0x1000 : 1

%a : 1

0x1004 : 1

[]

[]

[Const(1)]

[]

[]

[Reg(2)]

[]

Reg(0) : 0x1000

Reg(1) : 0x1004

0x1000 : 1

Reg(2) : 1

0x1004 : 1

� __DSE_Alloca__ takes the ID of the register in the left hand side and the address of a
newly allocated physical memory block. In the above example, the ID of \%x is 0 and
the physical memory address is 0x1000. The symbolic memory after line 2 will have en-
try Reg(0) : 0x1000.

� __DSE_Store__ assumes that there exists a symbolic expression of its value operand (constant
or register) on top of the stack. It takes a physical memory address as a parameter and
stores the symbolic expression at the address.

� __DSE_Load__ takes the ID of the register in the left hand side and the address of the
physical memory block of which value will be loaded to the register.

The behavior of other symbolic manipulation functions are defined in a similar way. __DSE_ICmp__
and __DSE_BinOp__ take the ID of the register in the left hand side and its LLVM opcode
(llvm::CmpInst::Predicate and llvm::Instruction::BinaryOps, respectively). The skeleton code pro-
vides the implementation of __DSE_Branch__ in SymbolicInterpreter.cpp for a reference.

5

Assignment 2 Symbolic Execution Playground HSS

Working with Z3 Expressions. Instructions like llvm::Inst::CmpInst and llvm::BinaryOperator

manipulate symbols and need to be represented equivalently in the constraints. You will be
working with Z3 Expressions to represent these manipulations. The Z3 API uses a feature
of C++ called operator-overloading to allow you to use C++ arithmetic and comparison
operators with objects of type z3::expr. We show some examples below to represent arithmetic
and comparison expressions on z3::expr objects. These examples assume that E1 and E2 are
two objects of type z3::expr, and their result is stored in another object E of type z3::expr.

Operation Representation

Addition E = (E1 + E2)

Less-Than E = (E1 <E2)

Part 3: Backtracking Strategy

Recall from the lecture how conditions were handled in order for the DSE analysis to explore more
paths of the input test program. Modify the searchStrategy() function in src/Strategy.cpp to
perform this backtracking behavior. It should alter the current path formula that will be given
to Z3 so that it will derive a new input.
Path Formula and Search Strategy. After each execution of an instrumented program,
a path formula will be encoded and stored in formula.smt2. All the IDs of executed branch
instructions will be stored in branch.txt in order of execution which may be useful to generate
next inputs. Given the current satisfiable path formula, function searchStrategy will propose
a formula to derive new inputs that can lead to exploring more paths. The main function
in DSE.cpp will iteratively generate new inputs until a crashing input is found or a timeout
occurs.

Format of Input Programs

Input programs in this lab are assumed to have only sub-features of the C language as follows:

� All values are integers (i.e., no floating points, pointers, structures, enums, arrays, etc).
You can ignore other types of values.

� Assume that user inputs are only introduced via the DSE_Input function and other call
instructions to other functions do not exist.

Example Input and Output

Your DSE engine should run on a given instrumented program. For example,

$ cd DSE/test

$ make

$../../build/DSE/dse ./simple0 5

It will find a crashing input after 1 iteration and the input will be stored in input.txt:

Floating point exception

Crashing input found (1 iters)

$ cat input.txt

X0,1024

6

Assignment 2 Symbolic Execution Playground HSS

Items to Submit

Submit files Instrument.cpp, Runtime.cpp, and Strategy.cpp

7

