
Assignment 1– LLVM Playground (Part 4)

HSS
Fall 2024

In this part, you will build a “division-by-zero” dynamic analyzer for the C language using the
LLVM framework.
Logistics:

� LLVM Primer: Please make sure that you have skimmed the LLVM Primer presentation
(access it from the course webpage) to know the capabilities of LLVM.

� Using Sanitizers: Read the article on Hardening C/C++ Code with Clang Sanitizers 1

which surveys pre-existing sanitizers that target common kinds of programming errors.
The dynamic analyzer you will build is a sanitizer that targets “division-by-zero” errors..

� Setup Repo: I have created a github repo with all the necessary scripts to install
LLVM, Z3 and starter code to write a pass. You can access it at: https://github.com/
HolisticSoftwareSecurity/hssllvmsetup. The repo has examples of analysis (i.e., the
passes that do not modify the IR) and instrumentation (i.e., the passes that modify the
IR) passes.

� Development Environment: I use CLion (https://www.jetbrains.com/clion/) while
working with LLVM and strongly suggest you to use it. You can get unlimited access using
your @purdue.edu email.

Setup

The skeleton code for this part is located under part4 instrumentation folder of the following
repo. We will frequently refer to this top level directory as part4 when describing file locations
for the lab.

Repo

https://github.com/HolisticSoftwareSecurity/LLVMPlayground

Step 1

Clone the above repository to a folder:

$ cd

$ git clone https://github.com/HolisticSoftwareSecurity/LLVMPlayground.git

remote: Enumerating objects: 19, done.

remote: Counting objects: 100% (19/19), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 14 (delta 11), reused 11 (delta 8), pack-reused 0

Unpacking objects: 100% (14/14), done.

1https://microblink.com/be-wise-sanitize-keeping-your-c-code-free-from-bugs/

1



Assignment 1 LLVM Playground (Part 4) HSS

Step 2

Build the pass using the CMakeLists.txt as shown below:

$ cd ~/LLVMPlayground/part4_instrumentation

$ mkdir build && cd build

$ cmake ..

$ make

Among the files generated, you should now see InstrumentPass.so in the build/DivZeroInstrument
directory, from code that we have provided in DivZeroInstrument/src/Instrument.cpp (which
you will modify in this part), and an auxiliary runtime library, named libruntime.so that con-
tains functionality to help you complete the lab.

Step 3

Before running the pass, the LLVM IR code must be generated:

$ cd ~/LLVMPlayground/part4_instrumentation/DivZeroInstrument/test

$ clang -emit-llvm -S -fno-discard-value-names -c -o simple0.ll simple0.c -g

The second line (clang) generates vanilla LLVM IR code from the input C program simple1.c.

Step 4

you will implement your analyzer as an LLVM pass, called InstrumentPass. Use the opt

command to run this pass on the optimized LLVM IR program as follows:

DivZeroInstrument/test $ opt -load ../../build/DivZeroInstrument/libInstrumentPass.so

-Instrument -S simple0.ll -o simple0.instrumented.ll

The produced program in simple0.instrumented.ll should be identical to simple0.ll but it will
cease to be so once you implement the functionality of this lab:

DivZeroInstrument/test $ diff simple0.instrumented.ll simple0.ll

1c1

< ; ModuleID = 'simple0.ll'

---

> ; ModuleID = 'simple0.c'

Step 5

Next, compile the instrumented program and link it with the provided runtime library to produce
a standalone executable named simple0:

DivZeroInstrument/test $ clang -o simple0 -L../../build/DivZeroInstrument -lruntime simple0.instrumented.ll

Step 6

Finally run the executable on the empty input; note that you may have to manually provide
test input for programs that expect non-empty input:

DivZeroInstrument/test $ LD_LIBRARY_PATH=../../build/DivZeroInstrument ./simple0

Floating point exception

Indeed, our sample program has a division-by-zero error. In this lab, you will complete the In-
strument pass to catch this error at runtime, as well as report code coverage of the test run. In
particular, your output on the above test program should be:

2



Assignment 1 LLVM Playground (Part 4) HSS

Divide-by-zero detected at line 4 and col 13

and code coverage information will be printed out in a file named EXE.cov where EXE is the name
of the executable that is run (in the above case, look for simple0.cov). Our auxiliary functions
will handle the creation of the file; your instrumented code should populate it with line,col

information. If implemented correctly, you will see the following lines in simple0.cov that
indicate the executed lines from the program:

2,7

2,7

3,7

3,11

3,7

4,7

4,11

4,15

You will see some duplicates in EXE.cov. The reason is that one line in the C source code maps
to more than one line in the LLVM IR.

Lab Instructions

In this lab, you will build a dynamic analyzer to catch division-by-zero errors at runtime. A
key aspect of dynamic analysis involves inspecting a running program for information about its
state and behavior. We will develop an LLVM pass to insert runtime checking and monitoring
code into a given program. Our instrumentation will perform division-by-zero error checking
and record coverage information for a running program. In fuzzing lab, we will build upon this
lab to develop an automated testing framework.
Instrumentation Primer. Consider the following code snippet where we have two potential
divide-by-zero errors, one at Line A, the other at Line B.

int main() {

int x1 = input();

int y = 13 / x1; // Line A

int x2 = input();

int z = 21 / x2; // Line B

return 0;

}

If we wanted to program a bit more defensively, we would manually insert checks before these
divisions, and print out an error if the divisor is 0:

int main() {

int x1 = input();

if (x1 == 0) { printf(\Detected divide-by-zero error!"); exit(1); }

int y = 13 / x1;

int x2 = input();

if (x2 == 0) { printf(\Detected divide-by-zero error!"); exit(1); }

int z = 21 / x2;

return 0;

}

Of course, there is nothing stopping us from encapsulating this repeated check into some function,
call it __sanitize__, for reuse.

void __sanitize__(int divisor) {

if (divisor == 0) {

3



Assignment 1 LLVM Playground (Part 4) HSS

printf(\Detected divide-by-zero error!");

exit(1);

}

}

int main() {

int x1 = input();

__sanitize__(x1);

int y = 13 / x1;

int x2 = input();

__sanitize__(x2);

int z = 21 / x2;

return 0;

}

We have transformed our unsafe version of the program in the first example to a safe one by
instrumenting all division instructions with some code that performs a divisor check. In this
lab, you will automate this process at the LLVM IR level using an LLVM pass.
Code Coverage Primer. Code coverage is a measure of the fraction of a program’s code
that is executed in a particular run. In this lab, you will implement the mechanism underlying
modern code coverage tools, such as the LLVM’s source-based code coverage tool 2 and gcov 3.
It instruments the program’s LLVM IR instructions at compile-time to record the line and
column number of the program’s source-level instructions that are executed at run-time. This
seemingly primitive information enables powerful software analysis use-cases. We will explore
two such use-cases. In this part, you will use the information to improve your test suite by
adding tests that cover more code and thereby uncover crashing bugs. In fuzzing lab, you will
use the same information to guide an automated test input generator, thereby realizing the
architecture of modern industrial-strength fuzzers.
Debug Location Primer. When you compile a C program with the -g option, LLVM will
include debug information for LLVM IR instructions. Using the aforementioned instrumentation
techniques, your LLVM pass can gather this debug information for an Instruction, and forward
it to __sanitize__ to report the location at which a divide-by-zero error occurs. We will discuss
the specifics of this interface in the following sections.
Instrumentation Pass. We have provided a framework from which you can build your LLVM
instrumentation pass. You will need to edit the DivZeroInstrument/src/Instrument.cpp file
to implement your divide-by-zero sanitizer, as well as the code coverage mechanism. File Di-

vZeroInstrument/lib/runtime.c contains functions that you will use in your lab:

void __sanitize__(int divisor, int line, int col)

Here, Output an error for line,col if divisor is 0.

void __coverage__(int line, int col)

Append coverage information for line,col in a file for the current executing process.
As you will create a runtime sanitizer, your pass should instrument the code with calls to

these functions. In particular, you will modify the runOnFunction method in Instrument.cpp

to perform this instrumentation for all LLVM instructions encountered inside a function.
Note that our runOnFunction method returns true. Since we are instrumenting the in-

put code with additional functionality, we return true to indicate that the pass modifies, or
transforms the source code it traverses over.

In short, the lab consists of the following tasks:

2https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
3https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

4



Assignment 1 LLVM Playground (Part 4) HSS

1. Implement the instrumentSanitize function to insert a __sanitize__ check for a supplied
Instruction.

2. Modify runOnFunction to instrument all division instructions with the sanitizer for a given
block of code.

3. Implement the instrumentCoverage function to insert __coverage__ checks for all debug
locations.

4. Modify runOnFunction to instrument all instructions with the coverage check.

Inserting Instructions into LLVM code. By now you are familiar with the BasicBlock

and Instruction classes and working with LLVM instructions in general. For this lab you
will need to use the LLVM API to insert additional instructions into the code when traversing
a BasicBlock. There are manys ways to do this in LLVM. One common pattern when working
with LLVM is to create a new instruction and insert it directly after some previous instruction.

For example, in the following code snippet:

Instruction* Pi = ...;

auto *NewInst = new Instruction(..., Pi);

A new instruction (NewInst) will get created and implicitly inserted after Pi; you do not need to
do anything further with NewInst. Subclasses of Instruction have similar methods for doing
this. In particular, you will only need to create and insert new call instructions (CallInst), as
discussed below.
Loading C functions into LLVM code. We have provided the definitions of the auxiliary
functions __sanitize__ and __coverage__ for you, but you have to insert calls to them into the
code as LLVM instructions. Keep in mind that both of these functions are only used for logging
purposes. __sanitize__ logs all the occurences of a divisor being equal to zero, and __coverage__

logs any executed line of the code.
Before a function can be called within a Module, it has to be loaded into the Module using

the appropriate API Module::getOrInsertFunction 4. On way to do this is illustrated below:

Value* NewValue = M->getOrInsertFunction("function_name", return_type,

arg1_type, arg2_type, ..., argN_type);

Function* NewFunction = cast<Function>(NewValue);

Next, the function that you have created must be called. So you will have to create a call
instruction at instruction I using CallInst::Create 5 as illustrated below:

CallInst *Call = CallInst::Create(NewFunction, Args, "", &I);

Call->setCallingConv(CallingConv::C);

Call->setTailCall(true);

You should populate std::vector<Value *> Args with appropriate values for arguments.
Debug Locations. As we alluded to in the primer, LLVM will store code location information
of the original C program for LLVM instructions when compiled with -g. This is done through
the DebugLoc 6 class:

Instruction* I1 = ...;

DebugLoc &Debug = I1->getDebugLoc();

printf(\Line No: %d\n", Debug.getLine());

4https://llvm.org/doxygen/classllvm_1_1Module.html
5https://llvm.org/doxygen/classllvm_1_1CallInst.html#a850d8262cd900958b3153c4aa080b2bb
6https://llvm.org/doxygen/classllvm_1_1DebugLoc.html

5



Assignment 1 LLVM Playground (Part 4) HSS

You will need to gather and forward this information to the sanitizer functions. As a final hint,
not every single LLVM instruction corresponds to a specific line in its source C code. You
will have to check which instructions have debug information. Use this to help build the code
coverage metric instrumentation.

Submission

Submit only your modified file Instrument.cpp.

6


