
Assignment 1– LLVM Playground (Part 2)

HSS
Fall 2024

In this part, you goal is to develop a simple data flow analysis to detect “divide-by-zero” errors
in C code.
Logistics:

� LLVM Primer: Please make sure that you have skimmed the LLVM Primer presentation
(access it from the course webpage) to know the capabilities of LLVM.

� Setup Repo: I have created a github repo with all the necessary scripts to install
LLVM, Z3 and starter code to write a pass. You can access it at: https://github.com/
HolisticSoftwareSecurity/hssllvmsetup. The repo has examples of analysis (i.e., the
passes that do not modify the IR) and instrumentation (i.e., the passes that modify the
IR) passes.

� Development Environment: I use CLion (https://www.jetbrains.com/clion/) while
working with LLVM and strongly suggest you to use it. You can get unlimited access using
your @purdue.edu email.

Setup

The skeleton code for this part is located under part2 basic data flow analysis folder of the
following repo. We will frequently refer to this top level directory as dfa when describing file
locations for the lab.

Repo

https://github.com/HolisticSoftwareSecurity/LLVMPlayground

Step 1

Clone the above repository to a folder:

$ cd

$ git clone https://github.com/HolisticSoftwareSecurity/LLVMPlayground.git

remote: Enumerating objects: 19, done.

remote: Counting objects: 100% (19/19), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 14 (delta 11), reused 11 (delta 8), pack-reused 0

Unpacking objects: 100% (14/14), done.

1

Assignment 1 LLVM Playground (Part 2) HSS

Step 2

Build the pass using the CMakeLists.txt as shown below:

$ cd ~/LLVMPlayground/part2_basic_data_flow_analysis

$ mkdir build && cd build

$ cmake -DUSE_REFERENCE=ON ..

$ make

Among the files generated, you should now see DataflowPass.so in the build/DivZero

directory. DataflowPass.so is built from DivZero/src/DivZeroAnalysis.cpp which you will
modify shortly. We are now ready to run our bare-bones lab on a sample input C program. One
thing to note is the use of the -DUSE REFERENCE=ON flag: this lab comprises two parts and this
flag will allow you to focus on the features needed for Part 1 independently of Part 2.

Step 3

Before running the pass, the LLVM IR code must be generated:

$ cd ~/LLVMPlayground/part2_basic_data_flow_analysis/DivZero/test

$ clang -emit-llvm -S -fno-discard-value-names -Xclang -disable-O0-optnone -c simple1.c

$ opt -mem2reg -S simple1.ll -o simple1.opt.ll

The second line (clang) generates vanilla LLVM IR code from the input C program simple1.c.
The last line (opt) optimizes the vanilla code and generates an equivalent LLVM IR program
that is simpler to process for the analyzer you will build in this lab; in particular,-mem2reg
promotes every AllocaInst 1 to a register, allowing your analyzer to ignore handling pointers in
this lab. You will extend this to handle pointers in the next part.

Step 4

you will implement your analyzer as an LLVM pass, called DataflowPass. Use the opt command
to run this pass on the optimized LLVM IR program as follows:

DivZero/test $ opt -load ../../build/DivZero/libDataflowPass.so -DivZero -disable-output simple1.opt.ll

Upon successful completion of this lab, the output should be as follows:

Running DivZero on main

Potential Instructions by DivZero:

%div1 = sdiv i32 %div, %div

Format of Input Programs

Input programs in this lab are assumed to have only sub-features of the C language as follows:

� All values are integers (i.e., no floating points, pointers, structures, enums, arrays, etc).
You can ignore other types of values.

� You should handle assignments, signed and unsigned arithmetic operations (+, -, *, /),
comparison operations (<, <=, >, >=, ==, !=), and branches. All the other instructions
are considered to be nop.

� Input programs can have if-statements and loops.

� Assume that user inputs are only introduced via the getchar library function. The skeleton
code provides an auxiliary function isInput that checks whether a given instruction is a
function call to getchar. You can ignore other call instructions to other functions.

1https://llvm.org/doxygen/classllvm_1_1AllocaInst.html

2

Assignment 1 LLVM Playground (Part 2) HSS

Lab Instructions

A full-fledged static analyzer has three components:

1. an abstract domain

2. abstract transfer functions for individual instructions, and

3. combining analysis results of individual instructions to obtain analysis results for entire
functions or programs.

In this lab, we will focus only on implementing (ii), and only for a limited subset of instructions
as described above. More concretely, your task is to implement how the analysis evaluates
different LLVM IR instructions on abstract values from a provided abstract domain.

We have provided a framework to build your division-by-zero static analyzer. The frame-
work is composed of files Domain.cpp, DataflowAnalysis.cpp, and DivZeroAnalysis.cpp

under DivZero/src/ DivZeroAnalysis is a class that extends DataflowAnalysis.

Part 1: Transfer Functions

Step 1

Refresh your understanding about program abstractions by reading the article on A Menagerie
of Program Abstractions 2 3.

Once you have a good understanding of abstract domains, study the Domain class to un-
derstand the abstract domain that we have defined for you to use in this lab. The files Di-

vZero/include/Domain.h and DivZero/src/Domain.cpp include the abstract values and op-
erations on them. These operations will perform an abstract evaluation without running the
program. As described in the article, we have defined abstract operators for addition, subtrac-
tion, multiplication and division.

Step 2

Inspect DataflowAnalysis::runOnFunction to understand how, at a high-level, the compiler pass
performs the analysis:

bool DataflowAnalysis::runOnFunction(Function &F) {

outs() << "Running " << getAnalysisName() << " on " << F.getName() << "\n"

for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {

InMap[&(*I)] = new Memory;

OutMap[&(*I)] = new Memory;

}

doAnalysis(F);

collectErrorInsts(F);

...

}

The procedure runOnFunction is called for each function in the input C program that the
compiler encounters during a pass. Each instruction I is used as the key to initialize a new Memory

object in the global InMap and OutMap hash maps. These maps are described in more detail in

2https://purs3lab.github.io/hss/static_files/notes/galiosconnection.pdf
3https://www.seas.upenn.edu/~edinella/blog-posts/programabstractions/

3

Assignment 1 LLVM Playground (Part 2) HSS

the next step, but for now you can think of them as storing the abstract values of each variable
before and after an instruction. For example, the abstract state might store facts like “at the
point before instruction i, the variable x is positive.” Since InMap and OutMap are global, feel free
to use them directly in your code.

Once the In and Out Maps are initialized, runOnFunction calls doAnalysis: a function that you
will implement in Part 2 to perform the chaotic iteration algorithm. For Part 1, you can assume
that it simply calls transfer using the appropriate InMap and OutMap maps.

So, at a high level, runOnFunction will:

1. Initialize the in and out maps

2. Fill them using a chaotic iteration algorithm

3. Find potential divide by zero errors by using the InMap entries for each divide instruction
to check whether the divisor may be zero.

Step 3

Understand the memory abstraction in the provided framework. For each Instruction, DivZeroAnalysis::InMap
and DivZeroAnalysis::OutMap store the abstract state before and after the instruction, respectively.
An abstract state is a mapping from LLVM variables to abstract values; in particular, we have
defined Memory as a std::map<std::string, Domain *>. Since we refer to variables as std::string,
we have provided an auxiliary function named variable that encodes an LLVM Value into our
internal string representation for variables. Note that an Instruction is also a Value. For example,
consider the following LLVM program. We have shown the abstract state, denoted M, before
and after each instruction:

Instruction Before Instruction After Instruction

I1 \%x = call i32 (...) @input() \{\} \{\%x:⊤\}

I2 \%y = add i32 \%x, 1 \{\%x:⊤\} \{\%x:⊤\, \%y: \%x ⊕ 1\}

In the first instruction I1, we assign an input integer to variable \%x. In the abstract state,
we use an abstract value ⊤(also known as “top” or MaybeZero) since the value is unknown at
compile time. Instruction I2 updates the abstract value of variable \%y that is computed using
the abstract add operation (denoted ⊕) on the abstract value of \%x. Note that, in the LLVM
framework, the object for an assignment instruction (e.g., call, binary operator, icmp, etc.) also
represents the variable it defines (i.e. its left-hand side). Therefore you will use the objects for
instructions I1 and I2 to refer to variables \%x and \%y, respectively, in your implementation. For
example, variable(I1) will refer to \%x.

Step 4

Now that we understand how the pass performs the analysis and how we will store each abstract
state, we can begin implementation. First, you will implement a function DivZeroAnalysis::transfer

to populate the outMap for each instruction. In particular, given an instruction and its in-
coming abstract state (const Memory *In), transfer should populate the outgoing abstract state
(Memory *NOut).

The Instruction class represents the parent class of all types of instructions. There are many
subclasses 4 of Instruction. In order to populate the outMap, each type of instruction should be
handled differently.

4https://releases.llvm.org/8.0.0/docs/ProgrammersManual.html#the-instruction-class

4

Assignment 1 LLVM Playground (Part 2) HSS

Recall for this lab you should handle:

� BinaryOperators (add, mul, sub, etc.)5

� CastInst6

� CmpInst (icmp eq, ne, slt, sgt, sge, etc.)7

� BranchInst8

� user input via getchar() - recall from above that this is handled using isInput() from Di-

vZero/include/DataflowAnalysis.h

LLVM provides several template functions9 to check the type of an instruction. We will
focus on dyn_cast<> for now. In this example, we check if the Instruction I is a BinaryOperator:

if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {

// I is a BinaryOperator, do something

}

At runtime, dyn_cast will return I casted to a BinaryOperator if possible, and null otherwise.
Working with LLVM PHI Nodes. For optimization purposes, compilers often implement
their intermediate representation in static single assignment (SSA) form and LLVM IR is no
different. In SSA form, a variable is assigned and updated at exactly one code point. If a
variable in the source code has multiple assignments, these assignments are split into separate
variables in the LLVM IR and then merged back together. We call this merge point a phi node.

To illustrate phi nodes, consider the following code:

int f() {

int y = input();

int x = 0;

if (y < 1) {

x++ ;

} else {

x-- ;

}

return x ;

}

Depending on the value of y, we either take the left branch and execute x++, or the right
branch and execute x--.

In the corresponding LLVM IR (below):

entry:

%call = call i32 (...) @input()

%cmp = icmp slt i32 %call, 1

br i1 %cmp, label %then, label %else

then: ; preds = %entry

% inc = add nsw i32 0, 1

br label %if.end

else: ; preds = %entry

5https://llvm.org/doxygen/classllvm_1_1BinaryOperator.html
6https://llvm.org/doxygen/classllvm_1_1CastInst.html
7https://llvm.org/doxygen/classllvm_1_1CmpInst.html
8https://llvm.org/doxygen/classllvm_1_1BranchInst.html
9https://releases.llvm.org/8.0.0/docs/ProgrammersManual.html#the-isa-cast-and-dyn-cast-templates

5

Assignment 1 LLVM Playground (Part 2) HSS

% dec = add nsw i32 0, -1

br label %end

end: ; preds = %else, %then

%x = phi i32 [%inc, %then], [%dec, %else]

ret i32 %x

}

The update on x is split into two variables %inc and %\%dec. %x is assigned after the branch
executes with the phi instruction; abstractly, phi i32 [\%inc, \%then], [\%dec, \%else] says
assign \%inc to \%x if the then branch is taken, or \%dec to \%x if the else branch was taken.

Here is a piece of sample code to help you address phi nodes, as the specifics are beyond this
course; however, feel free to read up more on SSA if these kind of compiler details pique your
interest.

Domain *evalPhiNode(PHINode *PHI, const Memory *Mem) {

Value* cv = PHI->hasConstantValue();

if (cv){

// eval cv, manipulate Mem, return

}

unsigned int n = PHI->getNumIncomingValues();

Domain* joined = NULL;

for (unsigned int i = 0; i < n; i++){

Domain* V = // eval PHI->getIncomingValue(i), manipulate Mem

if (!joined){

joined = V;

}

joined = Domain::join(joined, V);

}

return joined;

}

Step 5

Implement a function DivZeroAnalysis::check to check if a specific instruction can incur a divide-
by-zero error. You should use DivZeroAnalysis::InMap to decide if there is an error or not.

Part 2: Putting it all together - dataflow analysis

Now that you have code to populate in and out maps and use them to check for divide by zero
errors, your next step is to implement the chaotic iteration algorithm in function doAnalysis.

First, review the dataflow analysis lecture content. In particular, study the reaching defini-
tion analysis and the chaotic iteration algorithm.

Informally, a dataflow analysis creates and populates an IN set and an OUT set for each
node in the program’s control flow graph. The flowIn and flowOut operations are repeated until
the algorithm has reached a fixed point.

More formally, the doAnalysis function should maintain a WorkSet that holds nodes that
“need more work.” When the WorkSet is empty, the algorithm has reached a fixed point. For
each instruction in the WorkSet your function should do the following:

1. Perform the flowIn operation by joining all OUT sets of incoming flows and saving the
result in the IN set for the current instruction. Here, you will use the entries from the InMap

and OutMap that you populated in Part 1 as the IN and OUT sets.

6

Assignment 1 LLVM Playground (Part 2) HSS

2. Apply the transfer function that you implemented in Part 1 to populate the OUT set for
the current instruction.

3. Perform the flowOut operation by updating the WorkSet accordingly. The current instruc-
tion’s successors should be added only if theOUT set was changed by the transfer function.

We have sketched out the start of this process for you by initializing the WorkSet with each
instruction in the input C program:

void DivZeroAnalysis::doAnalysis(Function &F) {

SetVector<Instruction *> WorkSet;

for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {

WorkSet.insert(&(*I));

}

// ...

For this lab, we do not need to maintain an explicit control flow graph; LLVM already
maintains one in its internals. In order for you to focus on the dataflow portion of this as-
signment, we have provided two auxiliary functions getSuccessors and getPredecessors (defined
in DivZero/include/DataflowAnalysis.h) that lookup and return the successors and prede-
cessors for a given LLVM Instruction.

First, uncomment the functions marked under PART 2, namely doAnalysis, flowIn, flowOut, join
and equal. After doing so, you will implement each part of the algorithm detailed above in the
following steps:

Step 1

In flowIn, you will perform the first step of the reaching definitions analysis by taking the
union of all OUT variables from all predecessors of I. You may find the getPredecessors method
in DivZero/include/DataflowAnalysis.h to be helpful here. This should be done in the
following function that is templated for you below:

void DivZeroAnalysis::flowIn(Instruction *I, Memory *In)

Given an Instruction I and its IN set of variables Memory In, you will need to union
the IN with the OUT of every predecessor of I. In order to take the union of two memory
states, you will need to implement the join function templated below:

Memory* DivZeroAnalysis::join (Memory *M1, Memory *M2)

Within this function, you will also need to consider the Domain values when merging these Memory

objects. Refer to the abstract domain on why this is necessary. Recall that a join operation for
combining two abstract values is defined in the Domain class.

Step 2

Call the transfer function that you implemented in Part 1 to populate the OUT set for the
current instruction.

Step 3

In flowOut, you will determine whether or not a given instruction needs to be analyzed again.
This should be done in the following function that is templated for you below:

7

Assignment 1 LLVM Playground (Part 2) HSS

void DivZeroAnalysis::flowOut(Instruction *I, Memory *Pre, Memory *Post,

SetVector<Instruction *> &WorkSet)

Given an Instruction I, you will analyze the pre-transfer memory Pre and the post-transfer
memory Post. If there exists a change between the memory values after the transfer is applied,
you will need to submit the instruction I for additional analysis. To determine if the memory
has changed during the transfer function, you will implement the function equal:

bool DivZeroAnalysis::equal(Memory *M1, Memory *M2)

In this function, you will again consider the Domain values when determining whether two Memory

objects are equal. Recall that an equal operation to evaluate equality between two abstract values
is defined in the Domain class.

Lastly, in flowOut be sure that you update the OutMap for instruction I to include values in Post.

Step 4

Recall in Part 1, a reference doAnalysis could be used to verify your check and transfer implemen-
tations. Now that you’re writing your own version of doAnalysis, you may need to rebuild the
pass without the reference. First, make sure that the doAnalysis function in DivZeroAnalysis.cpp

is not commented out. Next, follow these steps to compile using your implementation:

$ cd ~/LLVMPlayground/part2_basic_data_flow_analysis

$ cd build

$ cmake ..

$ make

Submission

Submit your modified file DivZeroAnalysis.cpp.

8

