Assignment 1- LLVM Playground (Part 1)

HSS
Fall 2024

The goal of this assignment is to get your hands dirty using LLVM and gain experience developing
static analysis and dynamic instrumentation techniques that can work on real-world code. In
this part, you goal is to understand different LLVM IR instructions and how they are produced
from C code.

Logistics:

e LLVM Primer: Please make sure that you have skimmed the LLVM Primer presentation
(access it from the course webpage) to know the capabilities of LLVM.

e Setup Repo: I have created a github repo with all the necessary scripts to install
LLVM, Z3 and starter code to write a pass. You can access it at: https://github.com/
HolisticSoftwareSecurity/hssllvmsetup. The repo has examples of analysis (i.e., the
passes that do not modify the IR) and instrumentation (i.e., the passes that modify the
IR) passes.

¢ Development Environment: I use CLion (https://www.jetbrains.com/clion/) while
working with LLVM and strongly suggest you to use it. You can get unlimited access using
your @purdue.edu email.

1 Generating Bitcode file

You can generate a bitcode file for a given C file by following the below instructions:
clang -c -emit-1lvm <your_c_file> -o <path_to_output_bitcode>

Example:

clang -c -emit-1llvm simple_log.c -o simple_log.bc

The file simple_log.bc will be in binary format. You can get human readable bitcode file from
the binary format using the following command:

1llvm-dis <path_to_bitcode_file>
Example:
1llvm-dis simple_log.bc

The above command will generate simple_log.11 which is a text file containing human-readable
LLVM IR.



Assignment 1 LLVM Playground (Part 1) HSS

You can generate bitcode for your entire project (i.e., multiple C files) using wllvm [1].

Part 1 - Understanding the LLVM IR
Repo

https://github.com/HolisticSoftwareSecurity/LLVMPlayground

Step 1

Study the LLVM Primer from the course webpage to understand the structure of the LLVM
IR. The primer shows how to run LLVM on a sample C program to generate the corresponding
LLVM IR program. You can use the partl_learningir/ directory in the repo for this purpose:

cd test
clang -emit-1llvm -S -fno-discard-value-names -c simpleO.c

Step 2

Write by hand the C programs corresponding to the LLVM IR programs under the partl_-
learningir/ir_programs directory and place them under the partl_learningir/c_programs/
directory. Ensure that running the above command on your hand-written C programs generates
the exact LLVM IR programs provided as we will auto-grade them. You can do so by using the
diff command-line utility to check if your files are the same. As shown in the following example:

cd part1_1earningir/c_programs
clang -emit-1llvm -S -fno-discard-value-names -c testl.c
diff testl.1l ../ir_programs/testl.1l

You can ignore some differences in clang attributes. Just make sure that the code is same.

2 Submission

Run the below command to produce file submission.zip and submit that file to brightspace.

make submit

mkdir -p submission

rm -rf submission/*

cp -r c_programs SubmisSsion

zip -r submission.zip submission/ 2 >61>/dev/null

References

[1] https://github.com/travitch/whole-program-1lvm.



