Holistic Software Security (ECE 695) — Assignment 0

Aravind Machiry
amachiry@purdue.edu

The goal of this assignment is to assess your understanding of software security concepts.
Answer each of the following questions. When in doubt, always give more details.

Problem 1

Lets see your C (and C++). Try to find all security issues (if any) in each of the following code
snippets.

a) Baby steps!

int main(int argc, char *xargv) {
char buf[10];
strcpy(buf, argv[0]);

b) Lets dance!

size_t s;

char *p;

scanf ("%1u", &s);

p = (char*)malloc(s + 4);

if (p) {
strcpy(p, "HDR");
fgets(p+3, s, stdin);

} else {
printf ("Out of memory!\n");
return -1;

}

int main(int argc, char *xargv) {
char buf[10];
strcpy (buf, argv[0]);

c) I am fancy!
In the following code, dfsize is the size of buffer pointed by dfstr.

static void webize( char* str, char* dfstr, int dfsize ) {
char* cpl;
char* cp2;

for ( cpl = str, cp2 = dfstr;
xcpl != '\O' && cp2 - dfstr < dfsize - 1;



Assignment 0

Holistic Software Security (ECE 695)

Aravind Machiry

++cp1, ++cp2 ) {
switch ( *cpl ) {
case '<':
*cp2++ = '&';
*cp2++ = '1';
*cp2++ = 't';
*cp2 = ;'
break;
case '>':
*cp2++ = '&';
*cp2++ = 'g‘;
*cp2++ = 't';
*cp2 = ;'
break;
default:
*cp2 = *cpl;
break;
}
}
xcp2 = '\0';
}

d) Sizing!!
int *p;

int q[20];
unsigned s;

memset(q, 0, sizeof(q));

p = malloc(s);
if (p != NULL) {

memset(p, 'A', sizeof(p));

} else {
return -1;

}

e) Lets print!

char format[20];

// Read format to display the log string.

scanf ("%19s", format);

// Print the log_str in required format.

printf(format, log_str);

f) The amazing destructor!

class base {
public:
base() {

“base() {
}
}

class sub: public base {

public:



Assignment 0 Holistic Software Security (ECE 695) Aravind Machiry

sub() {
}

“sub() {
}

}

int main() {
base *b =

new sub();
&éiéte b;

}

g) The amazing check!

char £f1;
int ret = sscanf(buf, %s, &fl);
if (ret '= 1) {

printf("Read Error\n");

return -1;

}

Problem 2

Lets check your understanding of runtime internals!! Make sure that you justify your answer.

a) [Yes/No] If we avoid storing return address on runtime stack then stack-based buffer over-
flows do not cause any security issues (especially, control-flow hijacking).

b) [Yes/No| We can always prove that a given program does not have any security vulnerabil-
ities.

c) [Yes/No] Exhaustive testing proves that the a given program does not have any bugs.

Problem 3

Operating Systems (OS) security concepts.

a) [Yes/No| A process can know physical addresses of its virtual addresses. Justify your answer
in either case.

b) [Yes/No| A process can read and write memory that belong to the operating system kernel.
Justify your answer in either case.

¢) Operating system should always sanitize (i.e., verify) addresses given by a user process.
Why? E.g., Destination address provided for read/write syscall.

d) [Yes/No| Is there any security issue in the following code? Justify your answer in either
case.



Assignment 0 Holistic Software Security (ECE 695) Aravind Machiry

unsigned gl;
char flag_buf[4];

unsigned i;
if (!copy_from_user(&i, buf, sizeof(i)) {
if (i<4) {
if (!copy_from_user(&gl, buf, sizeof(gl)) {
flag_buf[gl] = 0;
}
}
}



