Check for
Updates

Security Properties of Virtual Remotes and SPOOKing their
violations

Joshua Majors
Purdue University
West Lafayette, IN, USA
jmajors@purdue.edu

Darren Wu
Purdue University
West Lafayette, IN, USA
wul797@purdue.edu

ABSTRACT

As Smart TV devices become more prevalent in our lives, it becomes
increasingly important to evaluate the security of these devices. In
addition to a smart and connected ecosystem through apps, Smart
TV devices expose a WiFi remote protocol, that provides a virtual
remote capability and allows a WiFi enabled device (e.g., a Smart-
phone) to control the Smart TV. The WiFi remote protocol might
pose certain security risks that are not present in traditional TVs.
In this paper, we assess the security of WiFi remote protocols by
first identifying the desired security properties so that we achieve
the same level of security as in traditional TVs. Our analysis of four
popular Smart TV platforms, Android TV, Amazon FireOS, Roku
0S, and WebOS (for LG TVs), revealed that all these platforms vio-
late one or more of the identified security properties. To demonstrate
the impact of these flaws, we develop Spook, which uses one of
the commonly violated properties of a secure WiFi remote protocol
to pair an Android mobile as a software remote to an Android TV.
Subsequently, we hijack the Android TV device through the device
debugger, enabling complete remote control of the device. All our
findings have been communicated to the corresponding vendors.
Google acknowledged our findings as a security vulnerability, as-
signed it a CVE, and released patches to the Android TV OS to
partially mitigate the attack. We argue that these patches provide a
stopgap solution without ensuring that WiFi remote protocol has
all the desired security properties. We design and implement a WiFi
remote protocol in the Android ecosystem using ARM TrustZone.
Our evaluation shows that the proposed defense satisfies all the se-
curity properties and ensures that we have the flexibility of virtual
remote without compromising security.

CCS CONCEPTS

« Security and privacy — Security protocols; Malware and its
mitigation; Mobile platform security.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0098-9/23/07.
https://doi.org/10.1145/3579856.3582834

841

Edgardo Barsallo Yi
Purdue University
West Lafayette, IN, USA
ebarsall@purdue.edu

Saurabh Bagchi

Purdue University
West Lafayette, IN, USA
sbagchi@purdue.edu

Amiya Maji
Purdue University
West Lafayette, IN, USA
amaji@purdue.edu

Aravind Machiry
Purdue University
West Lafayette, IN, USA
amachiry@purdue.edu

KEYWORDS

Android TV, privileges escalation, attack, virtual remote

ACM Reference Format:

Joshua Majors, Edgardo Barsallo Yi, Amiya Maji, Darren Wu, Saurabh
Bagchi, and Aravind Machiry. 2023. Security Properties of Virtual Remotes
and SPOOKing their violations. In ACM ASIA Conference on Computer and
Communications Security (ASIA CCS °23), July 10-14, 2023, Melbourne, VIC,
Australia. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3579856.3582834

1 INTRODUCTION

There has been recent explosive growth of Over The Top (OTT)
digital streaming platforms [56], reaching globally $101B in 2020
and expected to grow at a CAGR of 14% over the next 5 years [36].
In the US itself, in 2020 a household on average has 1.64 OTT sub-
scriptions. The OTT platforms are dominated by the manufacturers
Roku, Apple, Amazon, and Google and account for over 1.1B devices
worldwide [27]. With the recent growth of these OTT platforms,
purchases through streaming devices, especially Smart TVs, has
also been growing rapidly at a CAGR of 19.8% and is expected
to reach $340.8B in 2027. Specifically, Android TV, developed by
Google, has grown incredibly fast, doubling the number of devices
each year since 2016 [1]. Currently, there are over 80M Android TV
(and its newer variant Google TV) devices [48] and more than 5K
apps published in the Google Play Store for this platform [25, 27].

Smart TV devices store passwords to many different services a
user may have, such as Google, Amazon Prime, and Netflix. In fact,
in order to use the full suite of features in Android TV devices, the
user is required to sign into a Google account. Smart TV devices
are typically continually connected to the Internet. Further, they
have few UI screens that will allow a user to query their status,
like currently running processes. This makes them a ripe target for
attacks meant for credential stealing or for using them as agents in
a botnet [12]. In fact, in August 2019 WootCloud disclosed a vulner-
ability in Android TV devices that allowed them to be employed
in a botnet [57]. Moghaddam et al. [41] showed the prevalence on
OTT devices of pervasive tracking and collecting device identifiers,
while [42] shows how to take over a smart TV running Android
TV OS by abusing the infrared communication protocol when an
attacker has direct access to the device. There have been a series
of warnings and published exploits about smart TVs and set-top

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3579856.3582834
https://doi.org/10.1145/3579856.3582834
https://doi.org/10.1145/3579856.3582834
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579856.3582834&domain=pdf&date_stamp=2023-07-10

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

boxes [13, 15, 31, 54], including some from government sources like
the FBI [54].

Despite this sense that OTTs provide an attractive attack surface,
there is remarkably little in the research literature evaluating the
security architectures and the resulting foundational vulnerabilities
of these streaming platforms. Existing works, such as the recent
work by Aafer et al. [2] assess Smart TV from a general software
security perspective, i.e., traditional vulnerabilities in Smart TV
devices.

This paper focuses on software remote capability in smart TV de-
vices implemented through the WiFi remote protocol. The software
remote protocol enables any WiFi enabled device to be used as a
remote control to the Smart TV. For instance, TV vendors provide
smartphone apps allowing the phone to be used as a virtual remote.
However, in addition to increasing flexibility, the virtual remote
also introduces a new attack vector that is missing in traditional
TV remotes. Analyzing the root cause of the attack allows us to
develop a foundational defense against it.

To systematically explore potential threats in virtual remote, we
first identify the necessary security properties i.e., Remote Control
Device Security Properties (RCDSPs), that should hold so that we
have the same level of security guarantees as in traditional TVs. We
explore the potential threats that can arise because of the violation
of the RCDSPs.

Second, we analyze four popular Smart TV platforms and show
that none of these satisfy all RCDSPs. To demonstrate the impact of
missing RCDSPs, we develop Spook, an app that exploits Android
TV’s WiFi remote protocol, the underlying mechanism for virtual
remotes. Spook is completely automated and takes control of any
Android TV it can communicate with. We demonstrate this attack
on real Android and Android TV OS devices. We have put videos
of Spook at work on real devices on an anonymized page [51].
Responsible Disclosure: All our findings have been reported to
the corresponding vendors. Google acknowledged our findings and
marked it as a severe security vulnerability [29]. This vulnerability
has been assigned CVE-2021-0889. In response, Google has started
to roll out changes to the Android TV OS that address some issues
with their WiFi remote protocol pairing policy!. We are waiting for
responses from other vendors.

Finally, using ARM TrustZone, we design and implement modi-
fications to WiFi remote protocol that prevents Spook and satisfies
all our RCDSPss. We believe that our defense serves as a feasible
proof-of-concept and encourages vendors to modify their WiFi
remote protocol to prevent security issues because of the virtual
remote.

In summary, this paper makes the following contributions:

(1) We present a security analysis of the virtual remote capabil-
ity of Smart TV platforms and identify the necessary security
properties (RCDSPs) that guarantee the same level of secu-
rity as traditional TVs. Our analysis of four major platforms
shows that they all have security flaws due to not complying
with one or more of the security properties.

ISpecifically, the release increases the code length and enforces lockout after a specific
number of unsuccessful attempts. But it does not provide the more foundational
defense, how to verify that Ul events are generated by a human user. We design and
implement such a defense (§ 4).

842

Joshua Majors, Edgardo Barsallo Yi, Amiya Maji, Darren Wu, Saurabh Bagchi, and Aravind Machiry

(2) We demonstrate the impact of missing any of the security
properties by implementing an attack Spook?, which exploits
the Android TV’s WiFi remote protocol and is shown to work
on current Android devices.

(3) The evaluation of Spook demonstrates that our attack is
effective, practical, and remains stealthy (e.g., the attack runs
in the background even with the TV monitor switched off).

(4) We develop a defense technique, leveraging the ARM Trust-
Zone on the mobile to prevent Spook and comply with all
the RCDSPs. Further, we suggest architectural changes that
vendors can use to protect Smart TVs from attacks targeting
the virtual remote capability.

The rest of the paper is organized as follows. First, we present the
properties that guarantee security in traditional TVs and relevant
aspects of the virtual remote capability provided by Smart TV OSes
in Section 2. Next, we delve into the details of an attack that violates
these security properties in Section 3 We then subsequently discuss
our proposed defense in Section 4. Then, in Section 5, we present
the detailed experiments and results, and we discuss further design
considerations in Section 6. Finally, we discuss related work and
conclude the paper. We provide details of Trusted Execution Envi-
ronments and the reverse engineering process of the WiFi remote
protocol in the appendix.

2 BACKGROUND
2.1 Virtual Remote Guarantees

Traditionally, users control TVs mostly through a remote, which
we call the Remote Control Device (RCD), which uses short-range
wireless protocols to communicate with the TV. TVs come with a
receiver and the RCD has a transmitter, thus facilitating one-way
communication from the RCD to the TV. We take inspiration from
traditional TV RCDs to design a security policy for modern virtual
remotes. We identify four properties modern virtual remotes must
satisfy in order to ensure their security.

e Only users with a valid RCD can control the TV. Analogous
to capability-based permission systems, the RCD provides the ca-
pability to control the TV. All users with a valid or compatible RCD
can control the TV. In principle, getting a valid RCD for a TV re-
quires knowing the make and model of the TV 3. Which requires
physical (or visual) access to the TV as the make and model are
usually written on the outer frame of the TV [53]. To summarize,
getting a valid RCD requires visual access (i.e., the ability to see the
TV). We call this the Visual Access Property (Pyq).

o Users are required to be within a certain distance to control
the TV. Most RCDs use short-range wireless protocols such as
Infrared and Bluetooth [18]. This limits the maximum distance
from which one can use an RCD. Hence, to control a TV, the user
should be within a certain distance (~ 100 m) from the TV. We call
this the Distance Bounding Property (Pgp).

e Human-triggered inputs. Only a human can perform key
presses on an RCD. In other words, a human is responsible for
initiating all key events from an RCD. We call this the Human
Attestation Property (Py,). Although it is possible for someone to

2Source code is available at [50].
3We acknowledge the existence of universal remotes. But, in the general case, one still
needs to know the make and model to get a valid remote.

Security Properties of Virtual Remotes and SPOOKing their violations

design machinery to automatically press buttons on a RCD, any
attack using this approach would have strong assumptions and
little to no real world impact. For this reason, we ignore specialized
hardware circuity that can initiate key events automatically.

e Only an authenticated remote can control the TV. While
we take inspiration from traditional TVs for the desired security
properties of a RCD, Smart TVs are granted access to users’ sensi-
tive information (e.g., credentials) and therefore require a stronger
security policy. We propose that RCDs for Smart TVs should be
explicitly authenticated to restrict access. We call this the Authenti-
cation Property (Pgy). This is different from some traditional RCDs,
especially IR protocols. IR protocols used by traditional TVs do
not authenticate the source from which the signal originated. If a
policy satisfies Py, it must have a way of identifying which source
a command came from and whether it has been authorized.

The properties Pyq, Pgp, Ppg, and Pg,, are the necessary conditions

that should hold to control a TV from an RCD. We call these Remote
Control Device Security Properties (RCDSPs).
Flexibility without increasing attack surface: As explained
in Section 1, Smart TVs store passwords to many different services
and unauthorized access could lead to loss of private user informa-
tion, which could, in turn, cause financial loss. Hence, we should
strive to not increase the attack surface for Smart TVs relative to
traditional TVs. In traditional TVs, any attack through an RCD
should satisfy RCDSPs. To ensure that we do not increase the at-
tack surface through a virtual remote, it should also have RCDSPs
as its necessary conditions along with additional flexibility that any
communication-enabled device (e.g., Smartphone) can be used as a
remote control.

2.2 Virtual Remotes in Smart TVs

Smart TVs run OSes that enable users to stream multimedia content
and interact with their TVs. These OSes can be either built-in to the
TV monitor or installed on a dongle that can be affixed to the TV
to provide “smart” capability. These OSes provide a rich ecosystem
in streaming content apps, such as Netflix, Hulu, or Amazon Prime
Video. These systems offer the user multiple ways to interact with
the TV, such as remote controllers (either physical or software re-
motes) or other technologies to cast content on the TV, like Google’s
Chromecast. Currently, the market is being dominated by Smart
TVs that run Samsung Tizen OS, LG WebOS, Google’s Android TV,
Roku OS, and Amazon Fire OS, with a combined worldwide share
of 60% [9, 52].

All these OSes provide virtual remote capability through WiFi
remote protocols. This protocol is handled by a remote service that
runs in the Smart TV OS . The remote service comes preinstalled
with the OS on the Smart TV. It runs as a background service
and has access to higher privileged functions such as injecting UI
events and starting voice commands. The virtual remote is simply
an unprivileged app from the Google Play Store that runs on the
mobile that only needs network permissions. In theory, any network
enabled device could behave as a virtual remote.

In most cases, Smart TVs are connected to the home network and
sit behind a Network Address Translation (NAT) framework [55],
and hence are not open to arbitrary connections from anywhere on
the Internet. So, to use a device as a virtual remote, the device should

843

ASIA CCS 23, July 10-14, 2023, Melbourne, VIC, Australia

Connected to ADT-3
Keyboard

9

Voice
Commands

Directional Pad
(D-pad)

Back, Home

(€))
Figure 1: Android TV Remote Control. The figure shows a Hardware
Remote (a) and a Software Remote (b). The hardware remote works
by communicating over Bluetooth or IR, while the software remote
uses Bluetooth or a network connection over a local WiFi network.

)

be either in the same local area network or within the communicable
range of supported short-range protocols such as Bluetooth.

As per our analysis, the policies of WiFi remote protocols are
the same across all Smart TV OSes. For a device to act as a virtual
remote, it needs to be paired (except in Roku, which we discuss
in Section 2.2.1). The pairing is a one-time task per device and, in
principle, establishes a shared secret between the TV and remote
device. The remote device should use this shared secret to send
key events to the TV. The remote service on the TV verifies that
the communicating device is indeed paired through the established
secret before accepting key events.

2.2.1 Pairing. Figure 2 shows the overview of pairing process
in WiFi remote protocol. The remote device initiates the pairing
process by sending a particular message to the target Smart TV. If
the remote device is not previously paired, the TV will display a
one-time token, usually an alphanumeric code. The remote device is
expected to send the displayed token back to the TV, which verifies
the token, and if it matches, the corresponding device is paired.
Other steps occur after pairing, such as setting up a shared secret
and other identifiers to ensure persistence. We ignore these steps
as they are not needed for our discussion.

2.2.2 Interaction. Once paired, the device acts as a virtual remote
and can send key events to the TV. There are several apps on the
Google Play Store that use WiFi remote protocol to allow users to
connect their smartphone to their Android TV streaming devices as
a virtual remote [5, 14, 30, 35, 47]. We call these Software Remote
apps. These are quite popular, with the official apps for WebOS,
Android TV, Fire OS, and RokuOS all having over 10M installs
from the Google Play Store [5, 30, 39, 47]. One such app is shown
in Figure 1.

As we can see the Software Remote enables any key event to
be sent to the TV enabling the Smartphone to be used as a virtual
remote device.

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

Successfully connec-
ted to Smart TV

Smart TV
trusts device?

Attempt Connecting
to Smart TV

Y
If correct pairing . .
< Pairing code | Smart TV displays
code, Smart T.V now sentto Smart TV | pairing code
trusts device

Figure 2: Pairing process using the WiFi remote protocol. This is
shown from the point of view of the mobile device as the source; the
device at the other end is the Smart TV.

2.2.3 Verifying RCDSPs. As explained in 2.1, we want the virtual
remote device to satisfy all four RCDSPs. Table 1 shows the sum-
mary of our analysis on the top 5 popular Smart TV OSes.

Visual Access Property (Pyq): As explained in Section 2.2.1, all virtual
remotes should be first paired (i.e. the token on the TV should be
sent back to it). The Py, holds if the only way to get the token is
by seeing (i.e., visual access) the TV screen. However, there could
be other ways to get the token, specifically:

¢ Guessing (G): The token could be guessed by the virtual
remote if the OS uses cryptographically weak techniques
(e.g., fixed string) to generate the token.

o Bruteforcing (B): If invalid (i.e., with wrong pin) pairing
attempts are silently discarded by the TV, then the virtual
remote could brute force the token space until successfully
paired.

Hence, to ensure that Py, holds, we need to make sure that
the pairing process is not susceptible to at least the above two
attacks. Unfortunately, our analysis of the popular TV platforms
revealed that all but one prevent brute force attacks. Roku OS does
not even have any requirement for a pairing code, and consequently,
any device that can communicate with Roku TV can control it.
Specifically, one can initiate the pairing process and send random
pairing codes until the TV accepts the code. Furthermore, these
pairing attempts can be made even when the TV screen is turned
off (i.e., blank screen), making the attack stealthy.

We show in Section 3, how this small vulnerability can be used
to have complete and persistent control of TVs by developing an
end-to-end exploit. In response to our report, Google rolled out
changes for Android TV in late September 2021, i.e., Android TV
(New). The patch addresses the brute-forcing issue by introducing
a damping and a soft ban mechanism. Our analysis is indicated by
the third column of the Table 1.

Distance Bounding Property (P;p): Since most TVs are behind NAT
and are not internet-facing, the virtual remote should be either in
the same local area network or within the communicable range of
supported short-range protocols such as Bluetooth. Hence, virtual
remotes satisfy Py, as indicated by the fourth column of Table 1.

Human Attestation Property (Pp4): Once paired, as shown in Figure 1,
the Software Remote (i.e., virtual remote device) can send any key
events to the TV. Although the user interacts with Software Remote
to make it send the keys events, the user interaction is not required.
In other words, Software Remote (an app) can easily send events to
the TV without human interaction. Furthermore, the remote service
on the TV does not verify that a human indeed generates the key
events through the corresponding virtual remote. Consequently, the

844

Joshua Majors, Edgardo Barsallo Yi, Amiya Maji, Darren Wu, Saurabh Bagchi, and Aravind Machiry

current TV OSes virtual remote does not satisfy our Py, condition as
shown in the last column of Table 1.

Authentication Property (Pgy,): As we explain in Section 2.2.1, Smart
TVs (except for Roku) use a pairing process that enables a device
to be used as a virtual remote. The pairing process also establishes
a shared secret and derives a cryptographic key, which is used
to encrypt all the communications between the virtual remote
device and the corresponding Smart TV. This key also serves to
authenticate the corresponding device. Hence, the pairing process
ensures Pgy,. Our analysis shows that most Smart TVs use a pairing
process and thus satisfy P,y,. However, Roku devices blindly accept
any virtual remote that attempts to pair with them (without any
authentication) and thus, do not satisfy Pg,,. The second column
in Table 1 shows the summary of our analysis.

3 EXPLOITING VIRTUAL REMOTE

In this section, we aim to demonstrate the impact of violat-
ing RCDSPs by developing an end-to-end attack that exploits the
violation of Pyq, a RCDSP, to gain complete control of Smart TVs.
As shown in Table 1, Py, can be violated in most of the analyzed
Smart TV OSes. While we only implement Spook on Android TV,
we do perform experiments in other Smart TV OSes to show the
violation of RCDSPs, implying Spook (or a modified version of
Spook) is possible on other platforms.

3.1 Threat model

We assume that the attacker can communicate with the Smart
TV directly over a network connection. Specifically, she can ini-
tiate a TCP connection directly to the remote service running on
the target Smart TV. We also assume that the Smart TV and at-
tacker are sitting inside the same local area network behind a NAT
framework. Consequently, no connections can be initiated from a
device/server outside the local network to a device inside the local
network (although the opposite is possible). We do not assume that
other devices on the local area network are trusted by the remote
service on the Smart TV. All virtual remotes that wish to pair to
the smart TV must be authenticated. We also do not assume that
the TV screen is ON.

The objective of the attacker is to gain complete control of the
target Smart TV without turning ON the TV display. Specifically,
the attacker can install/uninstall apps or perform unlimited screen
recording, unbeknownst to the user. These can be further used
to compromise users’ privacy by stealing valuable credentials or
employing the user’s device as an agent in a botnet.

3.2 Attack Roadmap

As explained in Section 2.2, sending any key events to Smart TV
requires pairing. We also need a way to execute arbitrary commands
on the TV without customizing for every TV’s screen layout. We
break our attack into three phases: first Pairing, then Escalation, and
finally Attack. Details of the three phases can be seen in Figure 4.

3.2.1 Pairing. Our goal here is to pair with target Smart TV suc-
cessfully, which requires the attacker to send the pairing pin (dis-
played on Smart TV) to the remote service (Section 2.2.1). We use
the guessing strategy to get the correct pairing pin, as we do not
assume visual access to the TV. We randomly generate a pairing

Security Properties of Virtual Remotes and SPOOKing their violations

Local Area Network

loT
device
d Smart TV Malicious
! Server
device Malicious
Software
> Software y| Atftack
‘ Remote Service € Remote 7| Orchestrator

(a) Persistence using a Virtual Remote

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

Smart TV
\ device Malicious
Server
Malicious
Software

ADB Proxy

ADB Daemon k—— ADB Server

(b) Persistence without Virtual Remote

Figure 3: Methods used by Spook to ensure persistence. In either scenario, the command and control can come from a malicious server located
anywhere, not necessarily in the same network as the target Smart TV. In the scenario with the Virtual Remote, Spook achieves persistence
leveraging the ADB Proxy packaged in the malicious app. In contrast, in the scenario without the Virtual Remote, the ADB Proxy is silently

installed in the Smart TV and used by Spook to gain persistence.

Malicious IoT Smart
Server Device vV
ST, "send pa e Code “Q
Pairing ! Send Pairing Code i Repeat pairing
| phase until
Phase ! Pairing Code Accepted | correct pairing
K e ' code sent
'/ Send Key Events to \\
' Enable Debugger :
| | _pobugserReady | :
Escalation |—————] Connectto Debugger :
Phase : Send Key Events to :
: %_) :
' Connection Accepted I —
Attack | [T Atack k
Phase '

Figure 4: Diagram showing the attack phases. There are 3 devices
involved in the attack: the Smart TV under attack, a malicious IoT
device (a smartphone in the case of Spook) inside the same local
network as the Smart TV, and a malicious server located anywhere
in the world.

pin (rp) and try it until the pairing succeeds. Specifically, we start
the pairing process by sending a pairing request to the Smart TV.
Next, we send rp as the pairing pin. If the pairing fails, then we
restart the pairing process until pairing succeeds with r, i.e., the
displayed code on the Smart TV is rp.

Consider the pairing pin four hexadecimal digits (most Smart TV
OSes), the total number of unique pairing pins, N, is 16%. Because
a new code is generated with each trial (with the possibility of
reuse), each trial is independent and has a probability of p = 1/N
to succeed. The probability of guessing the secret code by the n-th
trial is given by Eq. 1.

n

Da-pFtp

k=1

P(S < n):ZP(S:k) = 1)
k=1

The probability of success increases with the number of trials. After
100K trials, the probability of success is greater than 75%. However,
as we show in Section 5.3, in reality, the number of trails required
for successful pairing is quite less. Furthermore, the pairing process
can be done stealthily, even if the display monitor is turned off, i.e.,

even after the user presses the power off button on the remote. Pairing
attempts, in fact, keep the Android TV from falling asleep. On other

845

Smart TV platforms such as FireTV OS, a pairing attempt is even
able to wake the device from a sleep state. Additionally, there is
a plethora of evidence indicating that users do not power off (i.e.,
Remove the power supply) their Smart TVs or disconnect them
from the network when not in use [34, 45, 46].

3.2.2 Escalation. After pairing, we can send any key events to
the Smart TV (Figure 1). Although sending arbitrary key events
gives complete control of the device, it could be quite tedious to
precisely perform any action on the Smart TV by just using key
events. For instance, to install an app, we need to send directional
(up/down/left/right) key events to select the install widget. Next,
we need to select the search button (again through directional key
events) and enter the app name (through keyboard events). Finally,
we need to select directional key events to select the target app and
then send key events to confirm. This key event-based mechanism
needs to be specialized for layouts and dimensions of the Smart TV,
making it tedious to have arbitrary control, rendering the attack
near useless.

In order to make the attack practical, we need to find a layout-
agnostic method to escalate privileges on the Smart TV. We found
the steps to activate and connect to the device debugger are stan-
dardized across Smart TV devices and do not change frequently,
even with different OS versions. While the steps to activate the
device debugger are purposely convoluted to avoid accidental acti-
vation by everyday or even curious users, the steps taken to acti-
vate the debugger seldom change across major OS updates. Conse-
quently, it is possible to script key events to send to the Smart TV
that enable the debugger. In our study of Android TV, we enable
the Android Debug Bridge on the Smart TV.

Android Debug Bridge (ADB). All Android-based devices, in-
cluding Smart TVs, have in-built support for developer debugging
tools. The Android Debug Bridge [23] is one of the most important
components of these debugging tools. Because FireTV OS is based
on Android (although not Android TV), it is also equipped with
ADB. ADB allows a system to communicate seamlessly with an
Android device through a daemon (ADB daemon), a background
process running on the Smart TV. The ADB Daemon runs at ele-
vated privileges to give developers the necessary tools to develop

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

and debug Android apps, such as installing, and uninstalling pack-
ages, rebooting the device, capturing screenshots, and accessing
the internal file system of the device, etc.

We use the ADB daemon on the Smart TV to send malicious
commands. However, the ADB daemon needs to be activated on
the Smart TV by first enabling developer mode, then enabling
debugging. We inject the sequence of key events into the Smart TV
device to mimic a user enabling the desired settings to activate this
mode. Once the ADB daemon has been activated, an ADB server can
now connect to the daemon. Upon receiving a new unrecognized
connection, a popup is shown on the Smart TV asking the user to
confirm the connection. Because we have a software remote paired,
we can send the proper key events to accept this dialogue. We
have posted videos demonstrating this process in practice on an
anonymized web page [51]. Unlike app installation, the sequence of
key events to activate does not vary with the screen layout but can
vary with different OS versions. This limits the number of possible
sequences of key events to at most the number of major Android OS
Versions. More specifically the number of combinations is limited
to the number of times the settings menus have been changed in
the Android TV OS, which does not occur in every major OS update.
Additionally, we can obtain the manufacturer and major OS version
of the TV after pairing, reducing the number of sequences we must
try to activate the ADB daemon.

3.2.3 Attack. With the ADB Daemon active on the Smart TV, an
attacker can perform a long list of practically unbounded privileged
actions. This section describes two attacks that can target individual
or all apps to steal users’ credentials.

Our first attack involves installing a malicious look-alike appli-
cation. Using ADB, the attacker obtains a list of installed apps, and
if it detects an app such as Amazon Prime Video or Netflix, it can
uninstall the legitimate app and install a malicious look-alike in its
place. The next time the user attempts to use that app, she will be
directed to the malicious look-alike, enter her credentials as if she
is on the trusted benign app. The stolen credentials are then sent
back to the malicious server, giving the attacker access to the user’s
account. To state the obvious, stealing of credentials of several of
these services (Google, Amazon, etc.) is serious and goes far beyond
illegitimate access to entertainment options. These credentials are
re-used for purchases and professional purposes (such as, shared
documents and cloud computing).

The second attack is the generalization of the above attack. Again,
Spook scans the device for installed apps that it wishes to steal
credentials from and then wipes all of the user data in the targeted
apps, including saved passwords. The next time the user launches
the app, she will have to sign in to continue using the service.
Because Android TV devices lack physical keyboards, the user must
navigate through an on-screen keyboard with the directional pad on
their remote. Spook starts recording the screen and analyzes which
characters were selected on the on-screen keyboard, extracting the
user’s credential. In a sense, this attack is easier than the previously
mentioned one since the attacker does not have to develop a look-
alike malicious app. The victim Smart TVs can also be used in a
botnet since they are typically connected to the Internet through
high bandwidth pipes, e.g., the Ares botnet [38].

846

Joshua Majors, Edgardo Barsallo Yi, Amiya Maji, Darren Wu, Saurabh Bagchi, and Aravind Machiry

Local WiFi Network

‘D

Cloud Server

ADB Server

ADB Client

'I ADB Server Proxy I'

Android OS

ADB Daemon
Proxy (apk) J :

-

{ Android TV 0S

ADB Daemon

Router

Figure 5: ADB Architecture using a NAT punchthrough via a series
of proxies. The ADB Proxy allows the connection between the mali-
cious ADB client (external network) and the ADB daemon located in
the Android TV device.

3.3 Implementation

We implemented our attack in an Android app, which we call Spook.
We need to understand the WiFi remote protocol semantics to im-
plement Spook. While legacy code bases for older WiFi remote
protocols can be found [20-22], to our knowledge there is no avail-
able documentation or source code for the version of the WiFi remote
protocol we target. To handle this, we manually reverse-engineered
the Android TV Remote Control app [30] from the Google Play
Store?. Details from our reverse engineering process can be found
in Appendix A.1.

Given the IP address of the target Smart TV, our Spook app

uses the guessing strategy, as explained before in Section 3.2.1, to
automatically pair with the Smart TV. We achieve persistence by
using ADB daemon and use ADB Proxy, which allows a malicious
server anywhere in the world to command and control the Smart
TV directly. Figure 3a shows the command and control set up by
Spook to the Smart TV, which provides the attacker direct access
to the TV.
ADB Proxy. Figure 5 depicts the architecture of the ADB Proxy. The
ADB Proxy employs two proxies to conduct a NAT punchthrough.
This allows an ADB server anywhere in the world to connect to
an Android device inside a local area network. The ADB Daemon
Proxy is connected to the ADB Daemon on the Smart TV while the
ADB Server Proxy is connected to the ADB Server on the cloud
server.

The ADB Server needs a method for initiating a connection to
the ADB Daemon. The proxy within Spook inside the local area
network (the ADB Daemon Proxy) initiates a connection with the
ADB Server Proxy in the cloud server. We will call this connection
the Proxy Socket. When the Proxy Socket is opened, the ADB Server
Proxy acts as an ADB Client and commands the ADB Server to
connect to itself as if it was an ADB Daemon. This connection is
the Server Socket. When the ADB Server opens the Server Socket,
the ADB Server Starts sending ADB messages. These messages
are then forwarded over the Proxy Socket to the ADB Daemon
Proxy. When the ADB Daemon Proxy receives these messages, it
will open a connection to the ADB Daemon on the Smart TV (the
Daemon Socket) and forward the messages one last time. There is
now an open TCP connection between the ADB Daemon and the
ADB Server, and the two are able to send ADB messages over this
TCP channel.

“Recall that this is the most popular software remote control app with over 10M
installs.

Security Properties of Virtual Remotes and SPOOKing their violations

3.3.1 Persistence without Virtual Remote. Instead of using Spook
as the ADB Proxy, it is possible to install the ADB Proxy on the
Smart TV device itself and have it run in the background. This
installation passes successfully without any permission violation
because the developer settings have already been enabled.

The ADB Proxy, now running on the Smart TV, can freely es-
tablish a connection between the ADB Daemon and a malicious
server (again, possibly anywhere in the world). This mode of attack
is more robust than having the proxy on the mobile because the
attack persists even if the mobile leaves the network. Because Spook
pairing happened silently (i.e., without user intervention) and the
ADB Proxy installation on the Android TV also happens silently,
the user stays blissfully unaware of the attack. Once installed, the
ADB Proxy makes sure to relaunch itself upon system reboot (as a
background process). Figure 3b shows the overview of this scenario.
Note that with this persistent mode of attack, a traveling mobile
device having Spook installed can infect as many Android TV de-
vices as it comes in contact with. This significantly amplifies the
effect of the attack.

3.4 Impact of missing RCDSPs

Although Spook starts by exploiting the violation of Py, property, it
is important to note that the violation of Py, is required to execute
the other step of the attack, i.e., Persistence successfully. Consider
the case where the property Py, holds that means only humans can
send the key events to the Smart TV. This prevents Spook from au-
tomatically performing any of its steps, not even pairing, reducing
the effectiveness of the attack. In the presence of Py, Spook now
needs to lure a human using Clickjacking techniques [32] to trigger
the pairing request and subsequent key events, which decreases
the effectiveness and practicality of the attack.

As shown in Table 1, all Smart TV OSes violate the Py, property.
An attacker can just use the violation of Py, property to gain ar-
bitrary control of the Smart TV. However, in this case, an attacker
needs to first gain control of a virtual remote (or Software Remote)
that is successfully paired with the target Smart TV. Then the at-
tacker can use the exploited Software Remote to send key events
to the Smart TV automatically.

4 DEFENSE MECHANISM

As shown in Table 1, none of the virtual remote protocols in Smart
TV platforms has the Human Attestation Property (Pp,,). This section
presents modifications for adding Py, to virtual remote protocol.
Our modifications, along with the damping techniques (Android
TV New), will ensure that the virtual remote protocol satisfies
all the RCDSPs. Our solution relies on Trusted Execution Envi-
ronments (TEE) [16], present in most smartphones through ARM
TrustZone [44]. Details of TEE can be found in A.2. Furthermore,
Smartphones with Software Remote is the most commonly used
virtual remote device. Some background about TEEs is provided in
the Appendix (Section A.2).

Ensuring Py,. To ensure the pin is entered by a human, it must be
signed by a TEE-protected key with a corresponding trusted public
key certificate. Specifically, the pin p for pairing the virtual remote
will be sent as (Sign(p, Tk), Teert), where Ty is the private key
and Tier; is the public key certificate corresponding to the hardware

847

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

backed private key, Tyk. Tk is embedded in the hardware of the
device (hence the term, hardware key) and can only be read when
the SoC is running in its most secure mode. Normal software cannot
access this key. Teers is made public on the Internet by vendors and
can be verified through the appropriate certificate chain.

The remote service will first verify using T¢er; that the message
is correctly signed, and T¢¢r; is not expired and attested by a known
list of certificate authorities chain. The user needs to authorize
the TEE every time it tries to access Ty (i.e., sign a message). In
order to sign any data with T, the user must physically press a
button on their device, ensuring only a human can generate a signed
message with Ty, thus satisfying Ppg.

Security analysis. We present possible attacks against our tech-
nique and how they will be prevented.

1) Spoofing. An attacker can try to spoof the signature by learn-
ing the private key. First, we use ephemeral keys (i.e., Ty and Teert)
such that they are valid only for a very short time. Second, the
root keys to generate Tk and Ters are stored in secure on-chip
memory, which can only be accessed when the SoC is in the secure
world, i.e., in TEE. Finally, these root keys are signed by device
vendors (i.e., certificate authorities). So, it is impossible for the
attacker to gain access to Ty, unless the attacker breaks the under-
lying cryptographic protocol or gets control of TEE (i.e., through
software vulnerabilities [11]) or attacks the certificate authority
infrastructure and steals the signing key.

2) Replay attacks. The attacker can store and replay previously

signed messages to the remote service. We will use a nonce gener-
ated by remote service with periodic refreshes to reduce the replay
window.
Implementation. We implemented our defense using AndroidKey-
store [28], which follows TrustZone implementation for hardware-
backed keys. Overall, our robust pairing process can be broken
down as follows. First, the user initiates the pairing from Software
Remote, in the mobile device. The Software Remote uses an action-
bound key (Tpx) from AndroidKeystore, thereby forcing human
interaction. When using Ty, the user must press a physical but-
ton that does not allow software to fake the button press. In our
case, the Google Pixel 3 ties the volume down button to the trusted
execution environment, establishing a user is present every time
the button is pressed. When the user wishes to pair the Software
Remote to their TV, she is presented with a challenge response
authentication. Similar to the systems in place, a 4 digit pin will be
displayed to the TV that the user must enter. Once the pin has been
entered, it is queued for signing with Ty The user then presses
the button tied to the trusted-execution environment and the pin is
signed with Ty, The Software Remote then sends the signed pin
as well as the public certificate to the TV for verification.

5 EVALUATION

We evaluate the effectiveness of both the proposed attack and de-
fense. Specifically, we want our evaluation to answer three ques-
tions. (1) Likelihood of Spook installation: We want to evaluate
the likelihood of a user installing our Spook app on their phone.
(2) Effectiveness of various phases of Spook: How long does it
take for Spook to gain complete control of a Smart TV? How much

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

Table 1: Summary of our analysis of the virtual remote support in
popular TV OSes. Here v and X indicates whether the corresponding
security property (Section 2) holds or not respectively. The letter G
indicates that the property can be violated through guessing strategy
(Section 2.2.3).

\ RCDSPs
Smart TV.OS g Policy Paw) | Pou | Pas | Pha
Android TV OLD 4-digit Hexadecimal () X(G) X
Android TV New | 6-digit Hexadecimal PIN () * X
Amazon FireOS 4-digit Decimal PIN (v) X(G) X
Roku OS None (3¥) X(3)
Web OS 8-digit Decimal PIN (v) X(G) X

* After 5 failed attempts, the remote service does not allow a Software Remote
to attempt pairing a 6th time until 30s have elapsed. After the 10th failed pairing
attempt, the remote service requires the Software Remote to wait 30s after every
subsequent failed pairing attempt.

3K The property never holds.

DOWN UP DOWN UP DO!
I | | 2l
I I o
I_I_I N~ -

Lt:)_l tq Button Press J

Figure 6: Diagram depicting the two types of delay required to create
a Ul event.

N UP

i
!

4

time is taken by each phase of our attack? (3) Overhead of our
defense: What is the time overhead of our defense?

5.1 Likelihood of Installation

As we argue in Section 3.1, Spook only requires the INTERNET
permission in the device. We want to verify how common this
permission is. Hence, we utilize static analysis to determine how
likely apps are to request this permission. To this end, we use
the Androzoo [3] dataset, which has over 17M Android apps from
different app stores (e.g., Google Play Store, F-droid)®. Our static
analysis started with a random sample of 65,382 apps from the
Google Play Store, with at least one release in 2021. Then, we
filtered out apps no longer in the Play Store and prior versions of the
same app. The final dataset had 24,837 apps. Next, we obtained the
permissions required by each app from each manifest file. From the
dataset, we find that most apps request the INTERNET permission
(98.87%). Moreover, this is a normal permission and is granted when

>

the app is installed, without prompting the user for authorization.

Hence, we argue that it is safe to assume Spook can be disguised
as a benign app and trick the user to install it without raising any
suspicion.

5.2 Overhead

For these experiments, we measure the time it takes to initiate the
ADB connection after the pairing process has completed. In this
section we first discuss the artificial delay we must inject between
key events such that the events are not dropped and then we discuss
how long it takes to establish a connection to the ADB Daemon.
We would like to minimize this time because if the user sees the
Android TV reacting to Ul events without her touching the remote,
she may become suspicious. Because the Ul events are scripted to

SThis dataset is quasi-public. We had to apply for its use, and that triggered verification
that we were legitimate security researchers, after which we were granted access.

848

Joshua Majors, Edgardo Barsallo Yi, Amiya Maji, Darren Wu, Saurabh Bagchi, and Aravind Machiry

1.0

0.8 4 -

0.6 - I
0.4 -

0.2 1 -

. of
Lo

50

0.0

Fraction of Successesful Trials
.

100 150 200 250 300 350 400

Delay between button presses (ms)
Figure 7: Plot showing the percent of trials that were successful in
allowing ADB connections with different delays between button

presses (ty).

precisely carry out the attack, even a single missed Ul event will
cause the end-to-end malicious action to fail.

Delay between Key Events for Robust Attack. For every button
press, there are two key events. The first signifies the button being
pressed (ACTION_DOWN) and the second signifies the button
being released (ACTION_UP). In order to simulate a button press,
we send an ACTION_DOWN key event followed by an ACTION_UP
key event. If the key events are sent too quickly, some are discarded.
Therefore we must introduce some delay between the key events.
This is shown in Figure 6 as tp,, ‘b’ because it simulates a button press.
We empirically determine that at the value of ¢, = 10ms, the button
press registers reliably (and not at any lower value). Additionally,
we needed to put some delay (f;) between the simulated button
presses, which would be the delay in the movement of the cursor.
We experimented with several different delays between consecutive
button presses to minimize the total duration of the attack while
keeping it robust. We find that reducing the delay, t4, too much
would cause the OS to drop the key events, thus thwarting Spook
from moving through the UL In Figure 7 we evaluate the likelihood
of success of the attack (to be exact, the attack steps after the pairing)
as a function of the delay (¢7). Each delay value had 50 trials. Thus,
we find that at the delay value of 400ms, the attack becomes robust,
i.e., succeeds with high likelihood.

The most common reasons for key events to fail was the result
of animations and the OS taking time to load different menus. Typi-
cally when the user clicks a button to navigate, there is a very short
animation that takes place. The cursor does not simply disappear
on one element and reappear on the next; usually there is a fading
or scrolling animation to give the UI a smoother feel. These ani-
mations take time. If key events are sent too quickly, the cursor
will not have had enough time to move and the key event will be
discarded. As a side note, it is even possible for legitimate user UI
events to be rapid enough that they are discarded by the OS [7].

We observe that an identical delay value is not needed between
all button presses. Key events for navigating the settings menu can
be sent very quickly, while key events to open menus or navigate
the home screen typically require more delay. We fine tune the
delay between the key events and rather than using the same ho-
mogeneous delay between all events, we empirically converge on
the minimum amount of delay for each specific event. The delay
value, reported in Table 2, is such that the end-to-end attack is
successful 100% of the time, as measured over 50 trials for each
delay value.

Security Properties of Virtual Remotes and SPOOKing their violations

ASIA CCS 23, July 10-14, 2023, Melbourne, VIC, Australia

Table 2: Required steps (along with the time) to establish an ADB connection from our cloud server to the ADB Daemon on the target Android
TV device (Figure 5). Note, number of Button Presses and consequently key events for Enabling developer settings and ADB connections may

change between manufacturers and API levels.

l Number of UI Actions needed on Android TV

Required Ste ‘ Average Time (ms
1 P [Button Presses (Bp) [Key events (B, x 2) ‘ & (ms)
Enable developer settings & ADB connections 50 100 12,559
Initiate ADB connection on server - - 238
Allow incoming ADB connection from server 4 8 1,434
Verify the ADB connection - - 14
Total 54 108 14,244
1000 {—° w704 8 ©
12600 - B0
0000 O—{_ }—0 0o o o 0 o)
1460
T 800 1 o
o o 16 7 T T T T T T T
£ 12500 7 © 1450 1 13800 14000 14200 14400 14600 14800 15000
o 600 - 14 1 Total Time to Establish ADB connection (ms)
E 124001 © e 14407 Figure 9: Plot showing the total time it takes to establish an ADB
8 400 A o 1430 4 . connection over 50 trials (summation of the 4 plots in Figure 8).
12300 | i, 1420 4
g 200] T 10 4 5000
Enable Developer Mode Create ADB Allow ADB Verify ADB
and ADB Connection Connection Connection Connection 4000

Figure 8: Plots showing the times it takes to complete the 4 steps in
establishing an ADB connection over 50 trials.

Initiating an ADB Connection. This experiment measures the
time it takes to initiate an ADB connection from the malicious
server to the ADB daemon on the Android TV device (Figure 8). All
the times are measured at the server and the server, the mobile, and

the Android TV device are all on the same LAN for this experiment.

The attack, after the pairing has been established, has four major
steps.

(1) Inject key events to enable developer settings and enable ADB
connections. (2) Open an ADB connection from the server to the
TV. (3) Inject key events to allow the ADB connection. (4) Verify
an ADB connection.

We show the individual times for each of these steps in Figure 8.

Note the different scales on the Y axis for the different steps. Over
50 trials, we found the time it took to establish an ADB connection
was quite consistent. The times ranged from 13.9s to 15.1s, with an
average of 14.2s and standard deviation of 200ms. While this is not
instantaneous, it is quick enough so that if the user is not paying
careful attention to Ul events on the TV monitor, she will not be
suspicious. Looking at the individual steps, the first insight is that
steps 1 and 3 which need many key events take longer than steps
2 and 4 which are mainly network activities. Since the amount of
data sent in the handshake process is minimal and all entities are
on the same LAN, the network times are low. As the number of key
events to accomplish an activity goes up, the delay that needs to be
interposed between the events adds up leading to a large value e.g.,
the "Enable Developer Mode and ADB Connection" step has many
Ul actions as shown in Table 2.

5.3 Cracking the Secret Code

For this experiment, we measure the time it takes to test a single
pairing code. By knowing how long it takes to guess a single pairing
code, we can estimate how long it will take to guess the pairing

849

Frequency
w
o
o
o

N
=3
S
S

1000

600 650 700 750 800

Time (ms)
Figure 10: Histogram showing the distribution of the time it takes
for one pairing attempt.

850 900 950

o
©

°
9

o
o

°
o

°
W

°
N

---- Average Succesful Attempt
—— Average Time
Average Time * Std. Deviation

Probability of
Guessing Pairing Code
o
R

o
-

o
o°
=)

25 5.0 7.5 10.0 12,5

Time (hrs)
Figure 11: Probability of guessing the pairing code after a given

15.0 17.5 20.0

amount of time analytically calculated using Equation 1. We also
mark, with a vertical dotted red line, the average of the experimen-
tally observed times in which Spook was able to successfully pair.

code correctly. For our tests, we used a Google Pixel 3 running
Android 11 (API 30) attempting to pair with a Xiaomi Mi Box S
running Android TV 9 (API 28). For each trial, we had the Software
Remote start the pairing process. Spook would then generate a 4-
digit hexadecimal code at random and attempt to pair to the Android
TV device. Most of the time, the pairing (expectedly) failed. Upon
failure, Spook would start a new trial. Each time a trial was started,
we printed a timestamped message to the internal device log. Using
this information we could find the time it takes to conduct each
individual trial. After removing outliers from our data set, 1.65%
of data points were removed and we were left with 79,455 trials. A

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

histogram showing the distribution of the times for a single attempt
is shown in Figure 10. The amount of time it takes to attempt to
pair will be dependent on the speed of the network connection,
as well as the hardware being used. The variability in our result
Figure 10 captures the variability in the network conditions over
different times and different experimental locations. On average,
it took 792ms to test a single pairing code. Using Equation 1, we
calculate that after 10 hours there is over a 0.5 chance Spook has
guessed the code correctly and after 20 hours this increases to over
0.75. The probability of guessing the pairing code after a given
amount of time can be visualized in Figure 11. Recall again that the
Spook does not need the Ul to be in the foreground and can attempt
to pair with the Android TV in a background service unbeknownst
to the user. Note also that the TV monitor can be switched off and
Spook’s pairing component will still be executing. These contribute
to the stealthiness of the attack. When we executed our automated
attack script against an Android TV OS 11.0 device, it was able to
successfully pair after an average time of 4hr 31m 30s.

5.4 Generality of Spook

Although we have created Spook primarily for Android TV, the
attack and corresponding exploit are feasible for all other Smart TV
devices that do not satisfy Py, and Py,. Specifically, we should be
able to send key events automatically, and the paring code can be
guessed. To check the violations of Py, we designed an experiment
with Android mobile and ADB. ADB enables us to inject tap events
to Android mobile using the shell command input tap <x> <y>,
where (X, y) is the coordinate on the screen where we wish to inject
a tap event (i.e., the device behaves as if a user has touched the
screen at (x, y) without actually having a user touch the screen).
We wrote a script that enters the correct PIN on the device by
sending input commands to the mobile using ADB. If the device
pairs correctly, we know there are no sound checks to make sure
a human is performing the pairing, verifying that Py, has been
violated. We also tested with random pairing codes and verified
that there is no limit on the number of attempts, and the pairing
code could be guessed without visual access to the Smart TV, thus
violating Py,. This shows that Spook is feasible on other Smart TVs.

5.5 Defense Overhead

For this experiment, we evaluate the overhead added by our pro-
posed solution. For this experiment, a Google Pixel 3 (Android 12)
and a Google Chromecast TV (Android 10) were used. We compare
the time it takes for two different methods to verify a virtual remote:
the "Normal" insecure method and the "Secure" method that uses
our defense. The normal method simply checks to see if the pin
matches the one displayed on the TV. The secure method requires
the virtual remote to send the signed pin to the remote service on
the TV as well as the certificate used to create the signature. The TV
then verifies this signature. We exclude the human time to press the
button to access the hardware keys to sign the pin. We repeated the
experiment 100 times for each of the control and the experimental
setting. Figure 12 summarizes the results. On average, our defense
mechanism added 113 ms to the pairing process. This overhead
can be considered negligible and imperceptible to the human user
considering the large times involved in the manual activities.

850

Joshua Majors, Edgardo Barsallo Yi, Amiya Maji, Darren Wu, Saurabh Bagchi, and Aravind Machiry

—— Normal

0.0020 Secure

0.0015

Density

0.0010

0.0005

J

0 500 1000
Time to Validate Code (ms)

0.0000

1500 2000

Figure 12: Distribution of running times of the pairing process with
our defense vs without.

6 DISCUSSION
6.1 Root Causes

We have identified the root cause of the security vulnerability pre-
sented by Spook lies in the difficulty in verifying events that happen
on a separate device. The problem is exacerbated when the only
information channel is a network connection in which the protocol
can be reverse engineered. The current systems in place do not ver-
ify a human user is attempting to pair the Virtual Remote, breaking
the Pp,,.

A root cause of the vulnerabilities relates to the Android ecosys-
tem. Android provides different tools to interface with the Android-
based platforms as part of the SDK. One of these tools is ADB,
which provides a command-line interface useful for developers for
debugging purposes. Prior researches [33, 40] have already noted
security issues and vulnerabilities on ADB. As we discussed in
Section 3 the main damage of our attack is done by connecting
to the ADB interface. Spook leverages the use of an ADB Proxy
to allow a connection between the ADB daemon in the Android
TV device and an external ADB server. Unfortunately, ADB is an
essential component of Android devices and cannot be removed as
it prevents open access to the device. However, no verification that
a human is present happens before activating the ADB daemon, a
particularly dangerous policy considering that the daemon executes
with elevated privileges. Further, the daemon accepts commands
from an ADB server without regard to whether the server is in the
same network as the device.

6.2 Traveling Attack

Because Spook is on a mobile device, it can travel between multiple
networks. Consider that a visitor to the home has Spook installed on
their phone. Spook can pair a Software Remote, activate the device
debugger, and install the ADB Proxy on the Smart TV. Then, when
the mobile that Spook is installed on leaves the local network the
Smart TV remains under attack. Spook can then repeat this process
when it travels to a new local network. An adversary anywhere in
the world can build up an army of Smart TVs under their control
with one instance of Spook installed on a mobile.

It is also noteworthy that the communication between the soft-
ware remote and the remote service on the Smart TV uses standard
Internet Protocol messaging. Therefore, any Internet enabled de-
vice on the network that is compromised can be weaponized to
attack Smart TVs through their software remote service. Spook

Security Properties of Virtual Remotes and SPOOKing their violations

could even be reconfigured to be installed on the Smart TV itself
and make a connection over localhost.

6.3 Alternative Defenses

Now we discuss other potential defenses and their shortcomings.
Increasing pairing code length. While increasing the pairing
code length is a simple and quick fix, issues arise that make Arm
TrustZone/TEE a much more elegant and permanent solution. In-
creasing the pairing code length may work temporarily, however as
technology advances and connections become quicker, there may
be a need in the future to increase the code length again, becoming
an annoyance for end users. Additionally, there is a chance weak
random number generation could be used, leading to the code being
easily guessed. Hardware keys further protect against this possi-
bility. Using hardware keys eliminates the current need and any
future need to increase the code length because for each pairing
attempt the user is required to press a physical button on their
virtual remote to pair, satisfying Py,,.

Hardware Remote Verification. While Spook takes advantage
of the WiFi-based pairing, one may think the same flavor of attack
would be possible with Bluetooth-based pairing. For Android TV,
that turns out to not be the case. Bluetooth-based pairing on An-
droid TV has a fundamental distinction from WiFi-based pairing
which satisfies Py, making this attack mode impossible over Blue-
tooth. A Bluetooth pairing process needs a physical button to be
pressed. This by design eliminates the possibility of non-human,
unsupervised pairing. However, the Bluetooth-based pairing lacks
several features of a Software Remote, e.g., it still needs a hardware
remote to be paired with the TV. One use case for Software Remotes
is when a user is no longer able to use the hardware remote (eg.
lost, broken, dead batteries, etc). Requiring the original hardware
remote to pair a Software Remote removes these features from
users proving a defense based on a TEE is much more effective and
sensible solution.

Another potential solution requires a user to press a physical
hardware button the smart TV. This approach is applicable for smart
TVs that have the OS built into the monitor as they typically have
several buttons. However, for smart TVs that come as a streaming
stick and attach to a monitor, many do not have any buttons. The
lack of hardware buttons on many smart TV device would make
hardware remote verification an incomplete solution as it would
leave many devices vulnerable.

7 RELATED WORK

Android Debug Tools. Security vulnerabilities and exploits on
core components of Android OS (e.g., IPC model, multitasking
mechanism, shared memory channels, etc.) have been widely ex-
plored. However, research focused on the security risks exposed by
development and debugging tools available on the platform (such
as, ADB) is limited. Lin et al. exposed vulnerabilities on ADB that al-
low an app to leak sensitive information of the device by capturing
the GUI screenshots without elevated privileges [40]. Hwang et al.
demonstrated privacy attacks by exploiting ADB capabilities [33].
All these attacks mainly focus on the power of ADB and the perils
of enabling it and assume that ADB is enabled on the victim devices.
But this assumption is invalid, as ADB is now disabled by default on
all devices rendering these works not directly applicable. Although

851

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

Spook uses ADB to carry out some phases of its attack, it first en-
ables ADB. It exploits vulnerabilities in WiFi remote protocol, one
of the essential components of Android TV, to enable ADB.

IoT and Streaming Device Platforms. Research focused on secu-
rity threats of OTT platforms and streaming platforms is starting to
gain momentum with the explosion of streaming platforms and ser-
vices, like Netflix, Amazon Prime Video, and Hulu. These threats are
commonly related to user privacy and the risk of DDoS attacks. In
early work, Enev et al. demonstrated the possibility of inferring TV
content by using TV’s EMI (electromagnetic inferences) [17]. John-
son et al. presented a DoS attack targeting Android-based Smart
TV device [37]. Mohajeri et al. presented a study focused on the
security and privacy vulnerabilities on OTT streaming devices [41].
Their study was focused on Roku and Amazon Fire TV. Their study
shed light on possible privacy leakage on streaming platforms due
to bad security practices or API abuse from third-party apps. Spook
can also leak sensitive information from the Android TV, but its
scope is broader. Also we created an exploit that is related to a
communication protocol while this prior work was a data collec-
tion and analysis study that shed light on the practice of using
trackers and fingerprinting device IDs, both of which damage pri-
vacy. Recently, Aafer et al. found 37 unique vulnerabilities across
11 different Android TV devices by using a log-guided dynamic
fuzzing approach [2]. In contrast, our work uncovers a serious se-
curity vulnerability in the OS itself that encompasses all vendor
and device-specific features. Recently, Zhang et al. presented the
EvilScreen attack [58], which, although similar in the end goal, re-
quires multiple input channels such as Bluetooth, IR, and Ethernet
and exploits inconsistencies across these channels. However, Spook
has no such requirement and exploits the design flaw in the protocol
itself independent of the communication channel.

There have been a few practical demonstrations of attacks
against Smart TVs. Some exploited vulnerability in the Hybrid
Broadcast Broadband (HbbTV) TV standard, such as, Flash and
JavaScript on it [19], or the low-level wireless RF or infrared proto-
col between the hardware remote and the TV [42, 43], or a combina-
tion of channel hijacking and URL injection attack [10]. Our work
is at a higher level in the protocol stack and uses a vulnerability in
the pairing protocol. It is also not dependent on the TV standard
that the device is compliant with, while these prior works are.
Security Analysis by Reverse Engineering. The vulnerabili-
ties exploited by Spook were discovered by reverse engineering
the Android TV WiFi remote protocol. Other recent works have
demonstrated vulnerabilities in IoT devices by reverse engineering
proprietary protocols. Antonioli et al. [8] exploit Android’s Nearby
Connections API by reverse engineering the protocol. Almon et
al. [4] show attacks on Neighbor Awareness Networking (NAN)
systems by reverse engineering NAN protocols present in Android.
They then present an open source version of the NAN protocol and
are able to infer issues with Apple’s similar system, Wireless Direct
Link. This is similar to how Spook only targets Android TV, but its
principals can be applied to target many Smart TV OSes.

8 CONCLUSION

In this paper we investigated the properties (RCDSPs) that make
traditional remote control devices secure. Upon our investigation, 3
unique properties became apparent that lead to a secure system in

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

traditional remote control devices: the Visual Access Property (Pyq),
the Distance Bounding Property (Pyp), and the Human Attestation
Property (Py,). Applying these properties to modern virtual re-
motes, we found several of these properties are violated in popular
OTT streaming platforms. Taking advantage of the violated prop-
erties we formulated an attack for four of the most popular OTT
platforms. In practice, we developed and showed the feasibility of
Spook, a piece of malware packaged in an Android smartphone to
take over an Android TV device.

We design and implement a defense using ARM TrustZone, that
guarantees that a human is initiating the pairing. This defense
thwarts Spook as well as any Ul injection-based attack against
Smart TVs, providing a secure version of WiFi remote protocol. The
overhead in terms of time to pair is insignificant. All our findings
have been communicated to the corresponding vendors. Google
acknowledged our findings as a security vulnerability, assigned it a
CVE, and released a new version of Android TV OS in September
2021 to partially mitigate the attack.

REFERENCES

(1]

[2

—

=
&

[13]

[14

[15]

[16]

[17]

9to5Google. 2019. Android TV has added over 130 operator partners since
2016, doubles unit growth every year, more. https://9to5google.com/2019/03/28/
android-tv-operator-growth/.

Yousra Aafer, Wei You, Yi Sun, Yu Shi, Xiangyu Zhang, and Heng Yin. 2021.
Android SmartTVs Vulnerability Discovery via Log-Guided Fuzzing. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association. https:
//www.usenix.org/conference/usenixsecurity21/presentation/aafer

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(Austin, Texas) (MSR ’16). Association for Computing Machinery, New York, NY,
USA, 4684€°471. https://doi.org/10.1145/2901739.2903508

Lars Almon, Arno Manfred Krause, Oliver Fietze, and Matthias Hollick. 2021.
Desynchronization and MitM Attacks Against Neighbor Awareness Network-
ing Using OpenNAN. In Proceedings of the 19th ACM International Sympo-
sium on Mobility Management and Wireless Access (Alicante, Spain) (MobiWac
’21). Association for Computing Machinery, New York, NY, USA, 974€105.
https://doi.org/10.1145/3479241.3486689

Amazon Mobile LLC. [n.d.]. Amazon Fire TV. https://play.google.com/store/
apps/details?id=com.amazon.storm.lightning.client.aosp.

Ole Andre. 2021. Frida. https://www.frida.re.

Android. 2019. Android: Input events overview. https://developer.android.com/
guide/topics/ui/ui-events.

Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2019. Nearby
Threats: Reversing, Analyzing, and Attacking Google’s “Nearby Connections” on
Android. In Network and Distributed System Security Symposium (NDSS).

Ben Schoon. 2020. Android TV makes up 1 of every 10 Smart TVs globally, trails
behind Samsung and Roku. https://www.fiercevideo.com/video/samsung- tizen-
expands-global-connected- tv-share.

Pedro Cabrera. 2019. SDR Against Smart TVs; URL and channel injection attacks.
In Defcon.

David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. Sok:
Understanding the prevailing security vulnerabilities in trustzone-assisted tee
systems. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1416-1432.
Catalin Cimpanu. [n.d.]. A new IOT botnet is infecting Android-based set-top
boxes. ([n.d.]). https://www.zdnet.com/article/a-new-iot-botnet-is-infecting-
android-based- set-top-boxes/

Catalin Cimpanu. 2019. A new IOT botnet is infecting Android-based set-top
boxes. https://www.zdnet.com/article/a-new-iot-botnet-is-infecting-android-
based-set-top-boxes/.

CodeMatics Media Solutions. [n.d.]. Remote for Android TV’s / Devices:
CodeMatics. https://play.google.com/store/apps/details?id=codematics.android.
smarttv.wifi.remote.tvremote.

Zak Doffman. 2019. Samsung’s Warning To Owners Of QLED Smart TVs
Is Quickly Deleted. https://www.forbes.com/sites/zakdoffman/2019/06/18/
samsung-issues-then-deletes- warning-to-check- smart-tvs-for-malicious-
software/.

Jan-Erik Ekberg, Kari Kostiainen, and N Asokan. 2013. Trusted execution envi-
ronments on mobile devices. In Proceedings of the 2013 ACM SIGSAC conference

on Computer & communications securil?/. 1497-1498.
Miro Enev, Sidhant Gupta, Tadayoshi Kohno, and Shwetak N Patel. 2011. Televi-

sions, video privacy, and powerline electromagnetic interference. In Proceedings

Joshua Majors, Edgardo Barsallo Yi, Amiya Maji, Darren Wu, Saurabh Bagchi, and Aravind Machiry

of the 18th ACM conference on Computer and communications security. 537-550.
Alois Ferscha, Simon Vogl, Bernadette Emsenhuber, and Bernhard Wally. 2008.
Physical shortcuts for media remote controls. In Proceedings of the 2nd interna-
tional conference on INtelligent TEchnologies for interactive enterTAINment.

D Goodin. 2017. Smart TV hack embeds attack code into broadcast signala€”no
access required. https://arstechnica.com/information-technology/2017/03/smart-
tv-hack-embeds-attack- code-into-broadcast- signal-no-access-required/.
Google. 2011. anymote-protocol. https://code.google.com/archive/p/anymote-
protocol/.

Google. 2011. google-tv-pairing-protocol. https://code.google.com/archive/p/
google-tv-pairing-protocol/.

Google. 2011. google-tv-remote. https://code.google.com/archive/p/google-tv-
remote/.

Google. 2017. Android Debug Bridge. https://developer.android.com/studio/
command-line/adb

Google. 2017. Google TV Pairing Protocol. https://android.googlesource.com/
platform/external/google-tv-pairing-protocol/.

Google. 2019. Google I/O 2019: Best Practice for Developing on Android TV.
https://youtu.be/Vo-UQDVykIs.

Google. 2020. Android Developers. KeyEvent. https://developer.android.com/
reference/android/view/KeyEvent

Google. 2020. Strategy Analytics: Samsung Leads As Global TV Streaming
Device Population Reaches 1.1 Billion. https://www.businesswire.com/news/
home/20200902005816/en/.

Google. 2021. Android Developers. Hardware-backed Keystore. https://source.
android.com/security/keystore. https://source.android.com/security/keystore
Google. 2021. Android Security Bulletin. https://source.android.com/docs/
security/bulletin/2021-11-01#android-tv

Google LLC. [n.d.]. Android TV Remote Control. https://play.google.com/store/
apps/details?id=com.google.android.tv.remote.

Andy Greenberg. 2019. Watch a Drone Take Over a Nearby Smart TV. https:
//www.wired.com/story/smart-tv-drone-hack/.

Lin-Shung Huang, Alex Moshchuk, Helen] Wang, Stuart Schecter, and Collin
Jackson. 2012. Clickjacking: Attacks and defenses. In 21st { USENIX} Security
Symposium ({ USENIX} Security 12). 413-428.

Sungjae Hwang, Sungho Lee, Yongdae Kim, and Sukyoung Ryu. 2015. Bitter-
sweet ADB: Attacks and Defenses. In Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security (Singapore, Republic of
Singapore) (ASIA CCS ’15). Association for Computing Machinery, New York,
NY, USA, 5793€“584. https://doi.org/10.1145/2714576.2714638

ZDNet Inc. 2019. FBI warns about snoopy smart TVs spying on you. https:
//www.zdnet.com/article/fbi-warns-about-snoopy-smart- tvs-spying-on-you/.
Innovation Lab. [n. d.]. Remote Android TV. https://play.google.com/store/apps/
details?id=fr.bouyguestelecom.remote.

Mordor Intelligence. 2021. Global Over the Top (OTT) Market - Growth, Trends,
COVID-19 Impact, and Forecasts (2021 - 2026). https://www.mordorintelligence.
com/industry-reports/over-the-top-market.

Ryan Johnson, Mohamed Elsabagh, and Angelos Stavrou. 2016. Why Software
DoS Is Hard to Fix: Denying Access in Embedded Android Platforms. In Ap-
plied Cryptography and Network Security, Mark Manulis, Ahmad-Reza Sadeghi,
and Steve Schneider (Eds.). Springer International Publishing, Cham, 193-211.
https://doi.org/10.1007/978-3-319-39555-5_11.

WootCloud Threat Research Labs. 2019. WootCloud Discovers ARES
ADB IOT Botnet Targeting Android Devices especially STBs/ TVs. https:
//wootcloud.com/wp-content/uploads/2019/10/WootCloud-Discovers- ARES-
ADB-IOT-Botnet-Targeting- Android-Devices-especially-STBs_-TVs-1.pdf.
(August 2019).

LG Electronics, Inc. [n. d.]. LG ThinQ. https://play.google.com/store/apps/details?
id=com.lgeha.nuts.

Chia-Chi Lin, Hongyang Li, Xiao-yong Zhou, and XiaoFeng Wang. 2014. Screen-
milker: How to Milk Your Android Screen for Secrets.. In NDSS.

Hooman Mohajeri Moghaddam, Gunes Acar, Ben Burgess, Arunesh Mathur,
Danny Yuxing Huang, Nick Feamster, Edward W. Felten, Prateek Mittal, and
Arvind Narayanan. 2019. Watching You Watch: The Tracking Ecosystem of
Over-the-Top TV Streaming Devices. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for Computing Machinery, New York, NY, USA, 1314€“147.
https://doi.org/10.1145/3319535.3354198

Valerio Mulas. 2019. Hacking an Android TV in 2 minutes. https://medium.com/
@drakkars/hacking-an-android-tv-in- 2- minutes-7b6£29518fF3.

Yossef Oren and Angelos D Keromytis. 2015. Attacking the internet using broad-
cast digital television. ACM Transactions on Information and System Security
(TISSEC) 17, 4 (2015), 1-27.

Sandro Pinto and Nuno Santos. 2019. Demystifying arm trustzone: A compre-
hensive survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1-36.

Consumer Reports. 2018. Samsung and Roku Smart TVs Vulnerable to Hack-
ing. https://www.consumerreports.org/televisions/samsung-roku-smart-tvs-

https://9to5google.com/2019/03/28/android-tv-operator-growth/
https://9to5google.com/2019/03/28/android-tv-operator-growth/
https://www.usenix.org/conference/usenixsecurity21/presentation/aafer
https://www.usenix.org/conference/usenixsecurity21/presentation/aafer
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/3479241.3486689
https://play.google.com/store/apps/details?id=com.amazon.storm.lightning.client.aosp
https://play.google.com/store/apps/details?id=com.amazon.storm.lightning.client.aosp
https://www.frida.re
https://developer.android.com/guide/topics/ui/ui-events
https://developer.android.com/guide/topics/ui/ui-events
https://www.fiercevideo.com/video/samsung-tizen-expands-global-connected-tv-share
https://www.fiercevideo.com/video/samsung-tizen-expands-global-connected-tv-share
https://www.zdnet.com/article/a-new-iot-botnet-is-infecting-android-based-set-top-boxes/
https://www.zdnet.com/article/a-new-iot-botnet-is-infecting-android-based-set-top-boxes/
https://www.zdnet.com/article/a-new-iot-botnet-is-infecting-android-based-set-top-boxes/
https://www.zdnet.com/article/a-new-iot-botnet-is-infecting-android-based-set-top-boxes/
https://play.google.com/store/apps/details?id=codematics.android.smarttv.wifi.remote.tvremote
https://play.google.com/store/apps/details?id=codematics.android.smarttv.wifi.remote.tvremote
https://www.forbes.com/sites/zakdoffman/2019/06/18/samsung-issues-then-deletes-warning-to-check-smart-tvs-for-malicious-software/
https://www.forbes.com/sites/zakdoffman/2019/06/18/samsung-issues-then-deletes-warning-to-check-smart-tvs-for-malicious-software/
https://www.forbes.com/sites/zakdoffman/2019/06/18/samsung-issues-then-deletes-warning-to-check-smart-tvs-for-malicious-software/
https://arstechnica.com/information-technology/2017/03/smart-tv-hack-embeds-attack-code-into-broadcast-signal-no-access-required/
https://arstechnica.com/information-technology/2017/03/smart-tv-hack-embeds-attack-code-into-broadcast-signal-no-access-required/
https://code.google.com/archive/p/anymote-protocol/
https://code.google.com/archive/p/anymote-protocol/
https://code.google.com/archive/p/google-tv-pairing-protocol/
https://code.google.com/archive/p/google-tv-pairing-protocol/
https://code.google.com/archive/p/google-tv-remote/
https://code.google.com/archive/p/google-tv-remote/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://android.googlesource.com/platform/external/google-tv-pairing-protocol/
https://android.googlesource.com/platform/external/google-tv-pairing-protocol/
https://youtu.be/Vo-UQDVykIs
https://developer.android.com/reference/android/view/KeyEvent
https://developer.android.com/reference/android/view/KeyEvent
https://www.businesswire.com/news/home/20200902005816/en/
https://www.businesswire.com/news/home/20200902005816/en/
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://source.android.com/docs/security/bulletin/2021-11-01#android-tv
https://source.android.com/docs/security/bulletin/2021-11-01#android-tv
https://play.google.com/store/apps/details?id=com.google.android.tv.remote
https://play.google.com/store/apps/details?id=com.google.android.tv.remote
https://www.wired.com/story/smart-tv-drone-hack/
https://www.wired.com/story/smart-tv-drone-hack/
https://doi.org/10.1145/2714576.2714638
https://www.zdnet.com/article/fbi-warns-about-snoopy-smart-tvs-spying-on-you/
https://www.zdnet.com/article/fbi-warns-about-snoopy-smart-tvs-spying-on-you/
https://play.google.com/store/apps/details?id=fr.bouyguestelecom.remote
https://play.google.com/store/apps/details?id=fr.bouyguestelecom.remote
https://www.mordorintelligence.com/industry-reports/over-the-top-market
https://www.mordorintelligence.com/industry-reports/over-the-top-market
https://doi.org/10.1007/978-3-319-39555-5_11
https://wootcloud.com/wp-content/uploads/2019/10/WootCloud-Discovers-ARES-ADB-IOT-Botnet-Targeting-Android-Devices-especially-STBs_-TVs-1.pdf
https://wootcloud.com/wp-content/uploads/2019/10/WootCloud-Discovers-ARES-ADB-IOT-Botnet-Targeting-Android-Devices-especially-STBs_-TVs-1.pdf
https://wootcloud.com/wp-content/uploads/2019/10/WootCloud-Discovers-ARES-ADB-IOT-Botnet-Targeting-Android-Devices-especially-STBs_-TVs-1.pdf
https://play.google.com/store/apps/details?id=com.lgeha.nuts
https://play.google.com/store/apps/details?id=com.lgeha.nuts
https://doi.org/10.1145/3319535.3354198
https://medium.com/@drakkars/hacking-an-android-tv-in-2-minutes-7b6f29518ff3
https://medium.com/@drakkars/hacking-an-android-tv-in-2-minutes-7b6f29518ff3
https://www.consumerreports.org/televisions/samsung-roku-smart-tvs-vulnerable-to-hacking-consumer-reports-finds/
https://www.consumerreports.org/televisions/samsung-roku-smart-tvs-vulnerable-to-hacking-consumer-reports-finds/

Security Properties of Virtual Remotes and SPOOKing their violations

Spook's Software Remote

WiFi Remote Protocol

Google Pairing
Library (Polo)

Figure 13: Protocol layering showing how our contribution (Spook’s
Software Remote) is built on top of two standard protocol layers
provided by Google.

vulnerable-to-hacking-consumer-reports-finds/.

Consumer Reports. 2021. How to Turn Off Smart TV Snooping Fea-
tures. https://www.consumerreports.org/privacy/how-to-turn-off-smart-tv-
snooping-features/.

Roku Inc. [n.d.]. Roku - Official Remote Control. https://play.google.com/store/
apps/details?id=com.roku.remote.

Ben Schoon. 2021. Android TV and Google TV surpass 80 million active devices
w/ strong US growth. https://9to5google.com/2021/05/18/android-tv-google-
user-numbers-2021/.

skylot. 2022. JADX: Dex to Java decompiler. https://github.com/skylot/jadx.
Spook. Shared folder. 2021. https://drive.google.com/drive/folders/11Nh5XcMi_
VkWm6h7brEJiGZDocpPkX7j?usp=sharing.

Spook: The Unfriendly Ghost Remote. 2022. https://sites.google.com/view/
friendly-ghost-remote.

Statista. 2019. Share of smart TV shipments worldwide in 2018, by operating sys-
tem. https://www.statista.com/statistics/257778/number-of-smart-tvs- installed-
worldwide/.

Enplug Support. 2020. Where can I find my TV’s model number?

Zack Whittaker. 2019. Now even the FBI is warning about your smart TVa€™s
security. https://techcrunch.com/2019/12/01/fbi- smart- tv-security/.

Dan Wing. 2010. Network address translation: Extending the internet address
space. IEEE internet computing 14, 4 (2010), 66—70.

Alan Wolk. 2015. Over the top: how the internet is (slowly but surely) changing the
television industry. Createspace Independent Publishing Platform.

WootCloud. 2019. WootCloud Discovers ARES ADB IOT Botnet Target-
ing Android Devices especially STBs/TVs. https://wootcloud.com/wp-
content/uploads/2019/10/WootCloud-Discovers- ARES- ADB-IOT-Botnet-
Targeting- Android-Devices-especially-STBs_-TVs-1.pdf.

Yiwei Zhang, Siqi Ma, Tiancheng Chen, Juanru Li, Robert H. Deng, and Elisa
Bertino. 2022. EvilScreen Attack: Smart TV Hijacking via Multi-channel Remote
Control Mimicry. https://doi.org/10.48550/ARXIV.2210.03014

[46]

[47]

[48]

[49
[50]

[57]

[58]

A APPENDICES
A.1 Reverse Engineering a Software Remote

To implement Spook, we reverse engineered the software remote
app developed by Google [22]. At the time of our work, although a
few third-party apps exist [14, 35], there was no publicly available
content detailing the Android TV WiFi remote protocol. We are the
first to detail and publish inner workings of the Android TV WiFi
remote protocol.

A.1.1 Reverse Engineering the Android TV Software Remote App.
Our goal was to produce an executable that would attempt pair-
ing a software remote to a given IP over a given port. In order
to accomplish this, we first used the JADX Java decompiler [49]
to decompile software remote apps for Android TV. While we de-
compiled third party Android TV software remote remote apps
[14, 35], we ultimately used the Android TV software remote app
developed by Google because the code was less obfuscated. After
decompiling, we placed all of the code from the decompiled app
into an Android Studio project. By viewing the decompiled code,
we were able to look at external dependencies for the software
remote app. We learned the software remote app uses Google’s
Pairing Protocol Library (Polo) [24]. Polo was developed by Google

853

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

to establish pairing sessions between a client and server in the same
local area network. We also learned that Android TV’s WiFi remote
protocol uses Polo heavily. This relationship is depicted in Figure
13. Upon analyzing the 3rd party software remote apps, we found
they also used Google’s Polo library and did not reverse engineer
the Android TV’s WiFi remote protocol from scratch.

Because we now had an Android Studio project with a large
amount of code already written, we naturally decided to package
Spook as an APK (Android Package Kit). However, JADX did not

decompile all parts of the app, and there was manual effort required
in order to make the app build. For example, there were some parts

of the Java bytecode that JADX was unable to decompile, we went
through manually and decompiled these sections. Additionally,
there were many resource files for different activities within the
app that did not decompile correctly and were preventing the Spook
app from building. We went through manually and removed these
references. This was not an issue, because our goal was to create an
executable that when given an IP and port, it would attempt pairing
to that device; we did not need any of the functionality from the
activities. This also meant we can package Spook as a background
service, adding to Spook’s stealthiness. Keeping our goals for Spook
in mind, we were able to remove other code for device discovery
and the implementation for the Bluetooth software remote. This
allowed us to better focus on the relevant parts of the decompiled
code.

We used Frida [6], an instrumentation toolkit, to better under-
stand the control flow of Googles software remote app, as well as
the WiFi remote protocol and the Polo library it utilizes. Using
Frida helped tremendously with debugging our own WiFi remote
protocol implementation. For example, a function that would send
key events to the TV accepted an integer, however we were un-
sure what integers input to the function to trigger different key
events. Using Frida we were able to look at the arguments and
map integers to different arguments. This led us to discover that
the integer arguments followed a mapping specified in Android
Developer documentation [26].

A.1.2 Details of the Android TV WiFi Remote Protocol. We also
used Frida to learn details about the WiFi remote protocol used for
Android TV. We were able to instrument a method with the sig-
nature sendMessage (byte[] bArr). This function is called every
time the software remote wants to send a message to the Android
TV. bArr represents the bytes that are to be sent to the Android TV.

During the pairing process, there are three messages that are
sent to the Android TV. Before the first message is sent, the soft-
ware remote must create a channel to send the messages over. The
software remote uses the Polo library to set up a TLS connection
to the Android TV over the WiFi remote port (typically port 6466).
The first message that is sent is a ping message. After analyzing the
decompiled code, we found this ping message is typically sent after
a time interval of no messages in order to keep the connection alive.
The Android TV remote service is expected to send a message in
return. This return message is called the pong message. While this
message typically is sent after an interval without any messages
that are sent, it is also used to initiate the pairing process. We infer
that this ping message readies the Android TV remote service for
pairing of a software remote.

https://www.consumerreports.org/televisions/samsung-roku-smart-tvs-vulnerable-to-hacking-consumer-reports-finds/
https://www.consumerreports.org/privacy/how-to-turn-off-smart-tv-snooping-features/
https://www.consumerreports.org/privacy/how-to-turn-off-smart-tv-snooping-features/
https://play.google.com/store/apps/details?id=com.roku.remote
https://play.google.com/store/apps/details?id=com.roku.remote
https://9to5google.com/2021/05/18/android-tv-google-user-numbers-2021/
https://9to5google.com/2021/05/18/android-tv-google-user-numbers-2021/
https://github.com/skylot/jadx
https://drive.google.com/drive/folders/11Nh5XcMi_VkWm6h7brEJiGZDocpPkX7j?usp=sharing
https://drive.google.com/drive/folders/11Nh5XcMi_VkWm6h7brEJiGZDocpPkX7j?usp=sharing
https://sites.google.com/view/friendly-ghost-remote
https://sites.google.com/view/friendly-ghost-remote
https://www.statista.com/statistics/257778/number-of-smart-tvs-installed-worldwide/
https://www.statista.com/statistics/257778/number-of-smart-tvs-installed-worldwide/
https://techcrunch.com/2019/12/01/fbi-smart-tv-security/
https://wootcloud.com/wp-content/uploads/2019/10/WootCloud-Discovers-ARES-ADB-IOT-Botnet-Targeting-Android-Devices-especially-STBs_-TVs-1.pdf
https://wootcloud.com/wp-content/uploads/2019/10/WootCloud-Discovers-ARES-ADB-IOT-Botnet-Targeting-Android-Devices-especially-STBs_-TVs-1.pdf
https://wootcloud.com/wp-content/uploads/2019/10/WootCloud-Discovers-ARES-ADB-IOT-Botnet-Targeting-Android-Devices-especially-STBs_-TVs-1.pdf
https://doi.org/10.48550/ARXIV.2210.03014

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

After the first message is sent, the software remote sets up an-
other TLS connection using Polo. This time, the software remote
initiates the connection to the Android TV, but over the pairing
port. The pairing port is one above the WiFi remote port. For exam-
ple, if the WiFi remote port was 6466, the pairing port is 6467. The
software remote maintains both TLS connections simultaneously.
Upon receiving the connection on the pairing port, the Android
TV remote service displays a 4 digit pairing code on the Android
TV. In the intended usage, the user would then type the pairing
code into the software remote and then the software remote would
start generating the second message. The second message always
contains the same header, followed by a series of bytes that create
a message in ASCIIL The message in ASCII represents a version of
the pairing code that has been hashed or manipulated in some way.
The third message that is sent is always the same, it is most likely
some acknowledgement that the software remote is ready to Key
Events to the Android TV remote service.

When the TV is paired, all messages to send Key Events to the
Android TV are sent over the WiFi remote port (typically port 6466).
These messages all follow the same format, with a 5 byte header, fol-
lowed by 3 fields: sequence field, action up/down field, and the Key
Event index. The sequence field is an 8 byte integer that increases
with subsequent Key Events. Each time a Key Event message is

854

Joshua Majors, Edgardo Barsallo Yi, Amiya Maji, Darren Wu, Saurabh Bagchi, and Aravind Machiry

sent, the sequence field increases by one. The action up/down field
is a 4 byte integer and only appears to take on 2 values: either zero
(0x00000000) or one (0x00000001). Zero represents ACTION_DOWN,
when the button is pressed. One represents ACTION_UP, when the
button is released. The final field is 4 bytes and represents the Key
Event the software remote wishes to inject on the Android TV. The
mapping of Key Events to integers can be found in the Android
Developer Key Event documentation [26].

A.2 Trusted Execution Environment

A Trusted Execution Environment (TEE) provides an isolated and
privileged execution environment. Specifically, it enables the exis-
tence of two separate worlds on the same system on a chip (SoC),
called the secure world (i.e., the world inside the TEE, e.g., Qual-
comm’s QSEE) and the non-secure world (i.e., the world containing
the main OS, e.g., Android). The TEE also guarantees that sensitive
data, such as hardware keys, are stored and processed in an isolated
and trusted environment. ARM implements TEE through ARM
TrustZone, which offers hardware-enforced isolation built into the
CPU providing a secure world separated from the OS (non-secure
world). ARM TrustZone is an integral part of modern mobile devices
allowing Android OS to provide hardware-backed, key attestation,
among other robust security services.

	Abstract
	1 Introduction
	2 background
	2.1 Virtual Remote Guarantees
	2.2 Virtual Remotes in Smart TVs

	3 Exploiting Virtual Remote
	3.1 Threat model
	3.2 Attack Roadmap
	3.3 Implementation
	3.4 Impact of missing RCDSP

	4 Defense Mechanism
	5 Evaluation
	5.1 Likelihood of Installation
	5.2 Overhead
	5.3 Cracking the Secret Code
	5.4 Generality of Spook
	5.5 Defense Overhead

	6 Discussion
	6.1 Root Causes
	6.2 Traveling Attack
	6.3 Alternative Defenses

	7 Related Work
	8 Conclusion
	References
	A Appendices
	A.1 Reverse Engineering a Software Remote
	A.2 Trusted Execution Environment

