
Ramblr: Making Reassembly Great Again

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry,
John Grosen, Paul Grosen, Christopher Kruegel, Giovanni Vigna

University of California, Santa Barbara
{fish, yans, antoniob, machiry, jmg, pcgrosen, chris, vigna}@cs.ucsb.edu

Abstract—Static binary rewriting has many important ap-
plications in reverse engineering, such as patching, code reuse,
and instrumentation. Binary reassembling is an efficient solution
for static binary rewriting. While there has been a proposed
solution to the reassembly of binaries, an evaluation on a real-
world binary dataset shows that it suffers from some problems
that lead to breaking binaries. Those problems include incorrect
symbolization of immediates, failure in identifying symbolizable
constants, lack of pointer safety checks, and other issues. Failure
in addressing those problems makes the existing approach un-
suitable for real-world binaries, especially those compiled with
optimizations enabled.

In this paper, we present a new systematic approach for
binary reassembling. Our new approach is implemented in a tool
called Ramblr. We evaluate Ramblr on 106 real-world programs
on Linux x86 and x86-64, and 143 programs collected from the
Cyber Grand Challenge Qualification Event. All programs are
compiled to binaries with a set of different compilation flags
in order to cover as many real-world scenarios as possible.
Ramblr successfully reassembles most of the binaries, which
is an improvement over the state-of-the-art approach. It should
be noted that our reassembling procedure yields no execution
overhead and no size expansion.

I. INTRODUCTION

Our world is extremely software-dependent. Because of
this, disruption caused by flaws in this software has signif-
icant impact in the “real world”. These flaws come in two
forms: bugs that simply affect functionality and bugs that lead
to exploitable vulnerabilities. While the former cause their
own level of havoc on our connected society, the latter are
especially dangerous, since vulnerabilities can be leveraged
by a proficient attacker to perform a larger-scale compromise.
For example, an unpatched vulnerability in an internet-facing
service could be exploited by attackers and used as a pivot
point into the internal networks of the organization running the
service. Because of this risk, patches to remediate exploitable
bugs must be deployed as quickly as possible.

If the source code of an application is available, patching
a bug is fairly straightforward: the source code is modified to
preclude the vulnerability (e.g., by adding a safety check or
refactoring application logic), and the program is recompiled.

However, when source code is absent, such as in the case of
proprietary software, the problem is much more complex. If
the user of the software is unwilling to wait for the vendor to
ship a new binary (or if the vendor no longer exists), the only
option is to patch the binary directly.

Patching binary code introduces challenges not present
when patching source code. When a patch is applied at
the source code level, the compiler will redo the process
of arranging code and data in memory and handling links
between them. In binary code, this is extremely difficult,
since this linkage information is discarded by the compiler
once finished. A performant binary patching process would
need to rediscover the semantic meanings of different regions
of program memory, and reassemble the program, redoing
the compiler’s arrangement while preserving cross-references
among code and data. As a result of the difficulties inherent
to this procedure, the patching of binary code is currently
an ad-hoc process. Current work in the research community
either makes unrealistically strict assumptions, does not pro-
vide realistic functionality guarantees, or results in significant
performance and/or memory overhead. Because of this, no tool
currently exists that can automatically and reliably patch real-
world binary software.

In this paper, we present a novel, systematic approach to
the reliable patching of software. Our work builds on the
reassembleable disassembly idea introduced by Uroboros [25],
but eliminates many of its limitations, adds functionality guar-
antees (or, unlike prior work, the ability to abort the reassembly
process when these guarantees cannot be met), and results in
zero performance overhead compared to the original binary.
We disassemble the original binary, properly identify symbols
and intended jump targets, insert the necessary patches, and
reassemble the assembly into the patched binary.

Our solution is based on advanced static analyses, which
introduces moderate analysis time requirements. To accom-
modate situations in which quick patching is paramount (e.g.,
when an identified zero-day vulnerability needs to be patched
as quickly as possible), we developed a series of workarounds
that drastically reduce the analysis time requirements while
relaxing some of the guarantees of functionality.

We describe our approach, discuss the workarounds, and
evaluate our approach on two corpora of binaries: a large set
of “realistic” binaries developed for the DARPA Cyber Grand
Challenge, and the set of GNU Coreutils binaries that has also
been evaluated by related work. Our evaluation measures the
reliability of our binary rewriting approach and demonstrates
an application in the form of the insertion of general binary
hardening techniques into previously-unhardened binaries, and
finds that we make significant improvements over the state of

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23225



the art. While existing work breaks between 15% and 60% of
the binaries it rewrites, our approach results in a successful
reassembly rate of over 98%.

We summarize our contributions as follows:

• We demonstrate that correctly disassembling and reassem-
bling binaries on a large scale is not as easy as previous
work has claimed. We identify several critical challenges
in binary reassembling that are not thoroughly explored
in previous work, and show that failing to tackle these
challenges will result in broken binaries. Our solution
eliminates several key assumptions made by previous
work and greatly expands the scope of binaries that binary
reassembling can be applied to.

• We propose a systematic solution, based on localized
data flow analysis and value-set analysis, to solve these
challenges in real-world binaries. Our solution allows a
certain level of functionality guarantees, and allows a
trade-off to be made between analysis speed and guar-
anteed functionality.

• With a new definition of procedures and an improved
control flow graph recovery technique, our solution also
makes it possible to freely rearrange functions when
reassembling, which was never done by any previous
work. This is critical in certain use cases.

• We implement our solution in a tool called Ramblr, and
evaluate it on a large set of binaries from the DARPA Cy-
ber Grand Challenge, as well as real-world binaries from
GNU Coreutils. In order to capture important features of
binaries that are mostly used in the real world, we amplify
the amount of binaries in our dataset by compiling them
with different optimization levels and compiler flags, fur-
ther stressing our tool. To our knowledge, we demonstrate
the first reassembling technique that works on optimized
binaries. We also demonstrate several applications of
binary reassembling, implement a few of them on top
of reassembling, and evaluate the overhead compared
with several alternative applications of binary patching,
showing that our technique has a significantly lower
execution overhead and higher functionality guarantees
than the alternatives.

In the next section, we will provide an overview of related
work and discuss how it relates to our approach.

II. BACKGROUND AND RELATED WORK

Our technique builds on current work in the field to achieve
safe reassembly of binaries. In this section, we provide an
overview of the state of the art to provide a proper frame for
our work.

A. Static Disassembling

There is much work in the literature regarding the correct
and complete disassembly of binaries. Linear sweeping [7],
which refers to sweeping from the beginning to the end of the
executable region of a binary and decoding all encountered
bytes as instructions, is the simplest such technique. The more
advanced approach, that most disassembling techniques build
upon, is recursive traversal. This technique starts from the
entry point of a binary, resolves the targets of each control

transfer, and recursively follows those targets to decode any
encountered bytes [12]. Recent research on static disassembly
mostly focuses on complicated corner cases in binaries [3],
[15].

The de-facto standard in industry for binary disassembling
is IDA Pro, although recently, other tools and systems, like
Hopper, Binary Ninja, angr, BAP, Radare2, etc. have started
to challenge its dominance [5], [21], [16], [23], [6].

Disassembly is the first step in control flow graph recovery,
and other highly effective techniques have been developed
to recover the control flow graph of a binary [12], [21].
Recent research suggests that, while modern disassemblers and
disassembly techniques are able to achieve a high coverage
of disassembled instructions on stripped, real-world binaries,
properly identifying functions remains a challenge, especially
on optimized binaries [1]. Even for the best techniques, ac-
curacy falls drastically from 99%, on binaries compiled with
no optimization (i.e., O0 optimization level in GCC), to only
82%, on binaries compiled with nearly full optimizations (i.e.,
O3 optimization level in GCC), combined with a noticeable
increase in both false positives and false negatives [1]. As we
will discuss in the following sections, current techniques have
a pathological reliance on proper identification of function start
points, a dependency that we remove with our approach.

B. Content Classification

After disassembling, the content within a binary must be
classified (i.e., differentiated as either code or data) before the
binary can be reassembled. This problem is formally referred
to as content classification, and is believed to be difficult
in binary analysis [22]. As previous research demonstrates,
differentiating code and data statically is “unresolvable” in
general, while doing so in a dynamic approach will inevitably
face the classical problems of dynamic coverage and state
explosion [11].

Recent work has been advancing the state of binary disas-
sembling. While the problem is still unsolvable in general, we
leverage, and improve, modern techniques stemming from the
control-flow integrity (CFI) community for this purpose [29].

C. Binary Rewriting

Binary rewriting refers to the process of transforming one
binary into another, either statically or dynamically, while
maintaining existing functionality. Normally, one or more new
features or behaviors are optionally added to the transformed
binary during this process. Static binary rewriting, where
the binary file itself is modified, generally introduces lower
overhead when compared with dynamic counterparts, where
binary code is instrumented at runtime. Thus, static rewriting
is widely used in control flow integrity protection [29], [24],
binary hardening [14], [27], security policy reinforcement [26],
binary instrumentation, etc. Traditionally, static binary rewrit-
ing is either performed via detouring, which involves adding
jump-out hooks to inserted code, or with full binary trans-
lation, lifting all code to an intermediate representation and
translating it back to machine code. Both manners incur
significant overhead on the resulting binary when compared
with the original binary. In practice, full binary translation
usually results in a binary that is very different, in terms of

2



cache locality and actual control flow, from the original one.
Binary reassembling does not suffer from those drawbacks,
as the reassembled binary is generated from the recovered
assembly code, avoiding the need for detours or complete
binary translation.

Dynamic binary rewriting techniques transform binaries as
they are executing, and are able to guarantee a full-coverage
transformation of commercial off-the-shelf (COTS) or stripped
binaries at a high cost of performance overhead. Common
dynamic rewriting tools include Pin, DynamoRIO [4], Val-
grind [13], and Paradyn/Dyninst [10], which are all widely
used in dynamic binary instrumentation.

D. Reassembleable Disassembling

804867d: sub esp,0x8
8048680: push DWORD PTR [ebp-0x10]
8048683: push 0x80487c8
8048688: call 80483e0
804868d: add esp,0x10
8048690: sub esp,0xc
8048693: push DWORD PTR [ebp-0x18]
8048696: call 80483f0
804869b: add esp,0x10
804869e: jmp 80486b9

Listing 1: An example output from objdump of a binary
without relocation information.

The assembly generated by a disassembler is usually unfea-
sible for assembling, due to the lack of relocation information.
Listing 1 shows a small piece of assembly extracted from a
stripped binary. The reader can observe that the assembly con-
tains absolute addresses, as opposed to labels. Theoretically,
an assembler can take an assembly with absolute addresses
and assemble it into a working binary. However, this approach
is incompatible with binary patching and retrofitting, as it
would require all of the basic blocks in the binary to be
at their original positions. The crux of binary reassembling
is the ability to relocate any binary code without any re-
location information. The procedure that converts absolute
addresses into corresponding labels, or symbol references,
is called symbolization, which is the core of reassembling.
Symbolization was first proposed and developed in trace-
oriented programming [28], and then used by Uroboros to
make reassembling binaries feasible [25]. Since our binary
reassembling approach stems from the approach described in
Uroboros, we first summarize the original approach here.

Symbolization attempts to determine whether an immediate
value is directly or indirectly used as a symbol reference (i.e.,
whether it is symbolizable). In Uroboros, all references in a
binary can be categorized into four different types, depending
on the location of the reference itself and the location of
its target: code-to-code (c2c), code-to-data (c2d), data-to-code
(d2c), and data-to-data (d2d). Given predefined code and data
memory regions from the binary, the symbolization process
checks if the immediate value falls into any predefined memory
region. If it does, a symbol name is created for the location and
references to that location are changed from being absolute
references (via immediates) to symbolic references (via the
symbol name). Once this is done, code can be inserted into
the re-symbolized assembly and the modified assembly can be
reassembled into a new binary.

Uroboros makes many assumptions that preclude its use
on many real-world binaries, and we propose significant
improvements on its approach in this paper. In the next
section, we will discuss Uroboros’ limitations and why they
prevent it from working on many binaries. After this, we
describe our proposed approach, eliminating these limitations.
In Section X, we evaluate our approach against the released
implementation of Uroboros written and released by its authors
and demonstrate improvements of our approach. Finally, in
Section XI, we discuss limitations of our approach and give
potential directions on future work.

III. PROBLEMS WITH CURRENT TECHNIQUES

As discussed in Section II, our technique aims to achieve
reassembly on a wider range of binaries than Uroboros does.
Uroboros is a first step in the direction of reassembleable
disassembly, but it does not perform well enough to work on
many real-world binaries. This is due to simplifying assump-
tions made by the authors. We present their assumptions here,
followed by a motivating example demonstrating failure cases
for Uroboros, and a discussion of the challenging situations
that cause such corner cases.

A. Uroboros’ Assumptions

As discussed in Section II, Uroboros categorizes symbol
references into four categories: code-to-code (c2c), code-to-
data (c2d), data-to-code (d2c), and data-to-data (d2d). Because
programs do not contain overlapping instructions, it is reason-
able to assume that the symbol references that target code
(c2c and d2c) must point to the beginning of an instruction 1.
To handle data-pointing symbol references (c2d and d2d) in
Uroboros, the following three assumptions are made:

a) All pointers to the data region must be stored at an address
aligned to the bit-width of the machine.

b) No transformation (i.e., of any base addresses) is required
to be performed on the original binary. Hence in the
reassembled binary, all data sections begin at the same
address as their counterparts in the original binary.

c) d2c symbols are only used as function pointers or jump
tables. Hence any d2c symbol reference must either point
to the beginning of a function, or be part of an identified
jump table.

With the three assumptions above, a very low false positive
and false negative rate of symbolization is achieved in the
original paper.

In the course of developing our approach, we identified
cases of reassembled binaries being broken after applying the
original symbolization approach. After investigation, we found
that there are multiple complex corner cases that must be con-
sidered in order to symbolize all symbolizable immediates, and
symbolize none of the non-symbolizable immediates. Further,
we found that two of the original assumptions (assumption b)
and c)) about d2c and d2d symbol references are too strict,
which leads to the breaking of reassembled binaries, or do not
support the goal of binary patching and retrofitting, which are
important applications of reassembling.

1Specially constructed binaries could contain overlapping instructions,
which both Uroboros and us ignore.

3



Fig. 1: A typical section layout of an ELF binary.

.bss

.data

.rodata

...

.text

Assumption a) assumes that all pointers are stored at an
aligned address. This assumption is generally acceptable, since
most compilers tend to align pointers in memory for the sake
of better performance. But it does not necessarily hold true for
all data constructs. Listing 2 demonstrates one such example
with a custom packing. A function pointer (field cb) is stored
at offset 1 of struct dp. Assuming dp is stored at a machine bit-
aligned address, the function pointer my_callback must be
stored at an aligned address. Accepting assumption a) breaks
any binary that has a data construct holding an unaligned
pointer like Listing 2. Our technique supports unaligned stor-
age and access of pointers, allowing us to handle arbitrary data
structures.

typedef int (*callback)();

#pragma pack(1) /* Disables struct field aligning */
struct dp_t
{

unsigned char flag;
/* A function pointer stored at an unaligned

address */
callback cb;

};

static dp_t dp = {1, my_callback};

Listing 2: An example of unaligned pointer storage. Assume
struct dp is stored at an aligned address 0x600000.

Assumption b) directly leads to the requirement that all data
sections must be put at their original addresses in the origi-
nal binary, which, in some cases, breaks binary retrofitting.
Figure 1 shows a common section layout for ELF binaries
on Linux. Usually, a binary may have a read-only section
.rodata, a read-write section .data, and a section .bss
which is initialized to all zeros at program start. If all three
sections are close enough to each other, we cannot add any
custom data to .rodata or .data section. Alternatively, a
new section must be created to hold the newly inserted data,
which, in certain cases where memory usage is a concern,
is suboptimal. Our technique uses advanced static analysis
to support arbitrary relocation and resizing of all sections,
discarding this assumption in the process.

Assumption c) simply does not hold true in many binaries.
The root issue is, as we mentioned in Section II-A, that
identifying function start points on stripped binaries is still
an unsolved problem, especially on binaries compiled with

optimization enabled and C++ binaries. Hence relying on
all function start points being successfully identified is not
practical, which is why our solution does not assume a set of
perfectly-identified function start points.

B. Motivating Failure Case

The successful operation of Uroboros depends on the
perfect execution of its symbolization step. Uroboros linearly
scans the data section of binaries, and considers every word-
sized buffer whose integer value falls in a memory region to
be a symbolizable integer. The idea seems straightforward,
but it does not necessarily work due to false positives and
false negatives during the symbolization step. An immediate
might be a symbolizable immediate, meaning that it should
be treated as a reference, or a non-symbolizable immediate,
meaning that it might look like a reference, but is actually
a true immediate. Any incorrect classification of the above
during reassembling directly leads to the generation of broken
reassembled binaries. As we will show throughout the rest of
this section and in our evaluation, this incorrect classification
happens rather frequently.

Uroboros depends on the three assumptions described
previously in order to lower the chance of collisions between
normal data and pointers, without the need of any advanced
static analysis. Now we demonstrate why this approach is not
generally applicable.

Consider the code snippet shown in Listing 3. Suppose
the compiled binary has a .text section ranging from
0x8000000 to 0x8050000, a floating point variable a has an
initial value of 4e−34. Its binary representation, as shown
in the listing, happens to be 3d ec 04 08, which is
0x804ec3d on little-endian machines. Uroboros mistreats the
initial value as a symbolizable integer and symbolizes it.
This is incorrect, and the binary is consequently broken after
reassembling. The root cause is that Uroboros does not know
the real type of any piece of data in the binary: all of its
assumptions depend on the low odds of misidentification of a
normal piece of data as a pointer.

static float a = 4e-34;

(a) Definition of a float variable
a.

8060080 3d ec 04 08

(b) Binary representation of float
a.

Listing 3: An example of a pointer value collision occurring
in a float. .text section begins at 0x8000000 with size
0x50000.

As we discuss in this paper, Ramblr takes a different
route of performing data identification and type recognition on
the target binary to support the symbolization step. The more
non-symbolizable data we identify, the less symbolization false
positives there will be. By utilizing data identification and type
recognition, our solution is able to identify the consecutive 4
bytes located at 0x8060080 as a floating point constant, and
avoids symbolizing it.

In the following, we will detail the different challenges that
Uroboros is unable to overcome, and that Ramblr addresses
with advanced static analysis.

4



C. Unsurmounted Challenges

Many challenges arise when applying current reassembly
approaches on a large set of real-world binaries. Like the
motivating failure case in Section III-B, these challenges
stem from corner cases that cause incorrect symbolization
classifications. These classifications fall into two categories:

Symbolization false negatives. A symbolization false negative
occurs when an immediate value (which is deemed as a
non-symbolizable immediate initially) does not fall into
any known memory region, but is used as part of a pointer
in the binary.

Symbolization false positives. An immediate value, initially
deemed as a symbolizable immediate, is sometimes sim-
ply a normal piece of data, causing a symbolization false
positive, as shown above in our motivating failure case.

There are several categories of situations that cause sym-
bolization mis-classifications. Here, we enumerate these cate-
gories with concrete examples.

Compiler optimizations. Due to compiler optimization
techniques (namely, constant propagation and constant fold-
ing), a constant may be added to or subtracted from a pointer,
creating a pointer to a different value. The target of this new
pointer might appear to point outside of any memory region
(causing a symbolization false negative) or to another memory
region altogether (causing an incorrect symbolization).

Listing 4 is a xorshift pseudo-random number generator
(PRNG) adapted from CGC binary CROMU_00042. We as-
sume that the state array is stored at 0x80609e8. Ac-
cording to the source code, variable i, which is the index
counter of the loop, should range from 0 to 16, and memory
addresses of the array assignment should be ranging from
0x80609e8 to 0x80609e8+16×8. However, in the assembly
compiled using Clang under optimization level O1, due to
compiler optimization, the index variable i takes an initial
value of −0x80 (which is −16 × 8), and the base pointer
at instruction 0x804a33d is 0x8060a68, which is essentially
0x80609e8 − 0x80. Uroboros cannot detect this occurrence.
Ramblr, instead, addresses it by using base pointer reattri-
bution, described in Section VII-A.

Abnormal binary behavior. In this case, the binary ex-
hibits abnormal behavior (for instance, pointer encryption and
decryption). If pointers are stored in a binary in a modified
form, they might cause symbolization false negatives.

Adapted from CGC binary KPRCA_00044, Listing 5
shows an example of decryption of a jump target stored
in ecx before using it as the target for call. The tar-
get function being called might be offsetted after reassem-
bling, but since Uroboros cannot determine that the variable
encrypted_func_ptr is the encrypted pointer of the
target function, the pointer will not be symbolized, which
results in a broken binary.

Since such binaries are rare in practice, and there is no
generic way to handle those cases, we deem those binaries as
unsafe for reassembling, and refrain from reassembling them.
However, it is necessary to detect these cases to be able to opt
out of reassembling. Uroboros has no functionality to handle
these cases, leading to broken data references in the resulting

/* Assume the array is stored at 0x80609e8 */
uint64_t state[16] = {0};

void sprng(uint64_t seed)
{

uint64_t state_64 = seed;
for (int i = 0; i < 16; i++)
{

state_64 ˆ= state_64 >> 27;
state_64 ˆ= state_64 >> 13;
state_64 ˆ= state_64 >> 46;
state[i] = state_64 * 1865811235122147685;

}
}

(a) An implementation of xorshift PRNG.

.text

...
; initial value of i is -0x80
804a2e4 mov esi, -0x80
804a300 mov eax, ebx
...
; beginning of the loop
804a300 mov eax, ebx
...
; state[i] = state_64 * 1865811235122147685
804a32d imul ebp, ecx, 0x19071d96
804a333 add ebp, edx
804a335 imul edx, ebx, 0xd81ecd35
804a33b add edx, ebp
; write results to the state array
; note that 0x8060a68 - 0x80 = 0x80609e8
804a33d mov dword ptr [esi+0x8060a68], eax
804a343 mov dword ptr [esi+0x8060a6c], edx
804a349 add esi, 8
804a34c jnz 0x804a300 ; loop end

.bss

...
80609e8 uint64_t state[16];

(b) An extract of the compiled PRNG in Clang with -O1.

Listing 4: An example where the base pointer appear to point
outside of any memory region due to compiler optimization.

80480bb mov ecx, OFFSET FLAT: encrypted_func_ptr
80480c1 sub ecx, OFFSET FLAT: encryption_key
; parameter to the function
80480c7 mov dword ptr [esp], 0xDEADBEEF
80480ce call ecx

Listing 5: An example of pointer decryption before using the
pointer as a jump target.

binaries. Ramblr addresses this through its data consumer
check, presented in Section VII-B.

Value collisions. A frequent cause of broken reassembled
binaries is value collision within the binary: a non-pointer
integer happens to have a value that coincides with a location
in a pre-defined memory region. This causes symbolization
false positives, in which the colliding immediate is incorrectly
symbolized, and its final value is wrongly modified in the
reassembly process. Contrary to the argument in [25] that such
collisions are “rare”, we find multiple cases in our dataset.

When reassembling more binaries, especially those com-
piled with optimization enabled, value collisions are not as
rare as Uroboros claimed. For instance, Listing 6 shows a

5



simple collision we found in Coreutils program factor in
byte array primes_diff. This array is the same (and with
the same alignment) when compiled with different flags and
optimization levels, but when compiled with -O0, -O1, and
-O2, those binaries are not big enough, and as a result, the
address 0x8060406 is not covered by any section in those
binaries. A similar issue is found in Coreutils’ ubiquitus
program ls. Without handling such cases, the binary is broken
by reassembling.

static const unsigned char
primes_diff[] = {
1, 2, 2, 4,
2, 4, 2, 4, ...
/* at 0x805da50 */
2, 6, 4, 2
/* at 0x805da54 */
6, 4, 6, 8, ...

};

(a) Part of the primes_diff
byte array.

.rodata:
805da50 .db 2
805da51 .db 6
805da52 .db 4
805da53 .db 2
805da54 .long 0x8060406

(b) Byte sequence at 0x805da54
falls into the memory region of
this binary when decoded as a
pointer.

Listing 6: An extract from factor compiled with GCC
in -O3 demonstrating a value collision occurred in array
primes_diff.

A generic solution to this issue would require an analysis
that can reason about the purpose of an immediate value in
a binary. In general, this is not solvable, and Uroboros makes
no attempt to compensate for this. Ramblr uses a set of best-
effort approaches to mitigate this problem:

a) We perform a primitive data type recovery to identify
the types of these data blocks. For example, if a 4-byte
data block is recognized as a float constant, it should
not be symbolized as a pointer. This is described in
Section VI.
b) We perform an array size recovery to identify the
size of some more complex program data constructs, like
byte arrays, etc. For example, if a 128-byte data block is
identified as a single byte array, none of the values inside
should be symbolized as a pointer. This is also described
in Section VI.
c) If an immediate value pointing to the middle of
an instruction is first determined to be symbolizable,
all previous decisions leading to this decision must be
rolled back. Section VI-C contains details of this decision
process.

Disassembly readability. Ideally, the disassembly
file should be easy-to-read. Uroboros displays all non-
symbolizable data in the form of individual bytes, which
is very difficult for users to understand or edit. With the
help of data type recognition, we are able to generate more
natural-looking assemblies.

IV. APPROACH OVERVIEW

To make our technique more approachable, we present an
overview of the technique in this section before describing it
in-depth throughout the rest of the paper.

Ramblr works in several main steps when reassembling a
target binary, each of which will be discussed in a subsequent

section:

Disassembly and CFG Recovery. First, Ramblr recovers a
complete CFG of the target binary, fully disassembling
each basic block as it is identified. We discuss this in
Section V.

Content Classification. Next, Ramblr classifies the contents
of the target binary into several types (i.e., code, pointers,
arrays, etc). Ramblr uses a combination of advanced
static analysis techniques, along with metadata available
in the target binary, to accomplish this task. Our classifi-
cation process is described in Section VI.

Symbolization. Using the results of the previous two steps,
Ramblr identifies symbol references in the target binary.
These references identify the semantic meaning of a
memory location (i.e., “the start of function X”), as
opposed to the syntactic meaning of the address (i.e., “this
code is at address Y”) and are used in the reassembly step
to maintain relationships from a reference to the object it
points to. Symbolization, with our various improvements
over previous work, is presented in Section VII.

Reassembly. With the symbols identified, reassembleable as-
sembly code is generated for the binary. Any desired
modifications to the binary are done on top of this
assembly code – instructions can be added, removed, or
replaced, and functions or data can be added. The mod-
ified assembly is then reassembled using an off-the-shelf
assembler. The resulting binary is a functional application
that exhibits the desired change of behavior from the
original. We delve into this process in Section IX.

Throughout the rest of the paper, we will detail, discuss,
and evaluate the steps summarized above.

The content classification and symbolization steps require
static analyses that have moderate runtime requirements. To
address the case in which reassembly must happen extremely
quickly, we have developed a set of workarounds that increase
the speed of our technique at the cost of some function-
ality guarantees of the resulting binary. We present these
workarounds in Section VIII.

Despite our advancements in the technique of reassembling
binaries, there are still cases where Ramblr cannot guarantee
the functionality of the resulting binary. In these cases, it will
emit an error message and refuse to reassemble the binary.

V. CFG RECOVERY AND DISASSEMBLY

Before a target binary can be reassembled, it must be
disassembled. We do this by computing a control flow graph
(CFG) of the target binary and disassembling any identified
basic block. Aside from this, we attempt to identify and
disassemble dead code, as it is important for our approach
that as much of the code as possible is disassembled.

We use the angr binary analysis framework for CFG
recovery. If angr’s CFG recovery fails on the target binary,
Ramblr is unable to continue and reports an error message.
However, we did not find such cases in our test dataset.

We will briefly summarize how angr’s CFG recovery
works and the slight modifications that we made to it to
improve the disassembly coverage. While we summarize the
approach in this section, we encourage the interested reader

6



to explore the angr authors’ full description on the design of
their CFG recovery [21].

A. Recursive CFG Recovery

CFG recovery starts from the entry point of the binary, and
recursively follows direct control flow transitions or resolves
and follows indirect control flow transitions. Eventually, the
recovery exhausts the recursively reachable basic blocks of the
executable regions of the binary (typically the .text section
for ELF binaries), and disassembles as many bytes as possible.

B. Utilizing Meta Information

angr respects certain meta information from the binary,
which includes segment and/or section information2. angr’s
CFG recovery assumes that non-executable memory regions
only contain data bytes, not executable code.

C. Iterative Feedback

While the CFG recover and the latter steps are described
separately in this paper, there is a backward flow of information
in our implementation. If the later Content Classification step
identifies a code reference (i.e., a hardcoded pointer in the
data segment of the binary that points to the code segment),
we inject it into angr as an additional target of a fake control
flow transition, so that the recursive CFG recovery can explore
that code block 3.

VI. CONTENT CLASSIFICATION

To avoid the pitfalls discussed in Section III, we leverage
advanced static analysis techniques to classify potential sources
of references. We detail these techniques, and their application,
in this section, and describe how they are ultimately used for
symbolization in Section VII.

Our analyses add a reasonable runtime requirement to the
reassembling process. In addition, they yield a certain level
of functionality guarantee (discussed below), which makes
it possible for reassembler to opt-out when facing binaries
with bizarre features, rather than reassemble and break them.
That being said, in cases when reassembly speed is absolutely
critical, we have developed workarounds that avoid the runtime
of the static analysis in exchange for a lower functionality
guarantee of the resulting binary. Those are discussed in
Section VIII.

Our approach to content classification uses two fundamen-
tal analyses:

Intra-function Data Dependence Analysis. We perform a
blanket execution [8] on basic blocks in a specific func-
tion, from which we recover data dependencies between
variable and constant definitions. Variable definitions in-
clude registers, stack variables, and memory cells. The

2PE files do not have segments, while ELF files normally have both sections
and segments, sections are not necessary for execution.

3Although linear sweeping will always find the code block eventually,
finding the basic block as early as possible, and starting decoding the basic
block at a correct location is still beneficial with respect to reducing the number
of overlapping or incorrectly-started blocks caused by inline data or function
alignments.

scope of this execution is strictly confined to the current
function. We assume all calls to other functions return an
unconstrained value 4, as long as the callee returns.

Localized Value-set Analysis. Value-set analysis is first pro-
posed as an abstract interpretation technique to statically
analyze machine code [2], [18]. Instead of running value-
set analysis on the entire binary, or a whole function,
we designed a constrained version of value-set analysis,
called localized value-set analysis, that only runs on a
slice of the binary, such as a set of basic blocks, a
loop, etc. With the result from data dependence analysis,
we are able to build a program slice with respect to a
memory access that acts on data representing potential
mis-classifications of content. Running localized value-set
analysis on the slice usually gives us enough information
regarding the classification of the content used by the final
memory access.

Unlike traditional static analyses, those two analyses used
in our approach are heavily constrained and localized in order
to make them fast and tractable. Empirically speaking, those
localized analyses are generally sufficient for the use cases in
our approach: resolving jump tables, recovering primitive data
types, and retrieving the sizes of arrays accessed in simple
loops. We use these analyses to support the data type recovery
and the segregation of different blocks of data from each other.
Both are used to reduce symbolization mis-classifications in
the next step of the reassembly process.

A. Data Identification and Type Recognition

By analyzing a recovered CFG, some data in the binary can
be identified and its type recognized, a procedure we call data
identification and type recognition. Several approaches, includ-
ing data dependence analysis, program slicing, and value-set
analysis are integrated in our solution to recognize data types
with a high identification rate. Data identification and type
recognition, although not evaluated in this paper, is very useful
in generating correct disassembly when inline data exists in the
binary, as it avoids symbolization classification errors in the
symbolization step.

Here we use jump table recovery as an example to demon-
strate how this approach works: a local backward program
slice is first generated with respect to the jump target, followed
by the application of value-set analysis on the generated slice
to recover the entries of the jump table and addresses of all
possible jump targets. Once the entries of the jump table are
recovered, we mark the range as data with a data type of
“pointer array”.

For binary reassembling, it is important to correctly differ-
entiate symbolizable and non-symbolizable data, since sym-
bolizing a non-symbolizable data entry or vice versa will lead
to a broken resulting binary. Table I shows all types of data
that Ramblr recognizes at the moment. They fall into several
broad categories:

Primitives. This includes pointers, bytes, shorts, integers,
floats, doubles, and so on. They are recognized by an-

4The notion of unconstrained values is not employed in blanket execution.
This can be seen as an abstract value that satisfies any comparisons.

5Depends on the bit-width of the binary.

7



Data type Size Symbolizable

pointer array multiple of 4/85 Yes
region boundary 0 Yes

DWORD 4 No
QWORD 8 No

32-bit floating point 4 No
64-bit floating point 8 No
80-bit floating point 10 No
128-bit floating point 16 No
null-terminated string variable No

non-null-terminated string variable No
null-terminated UTF-16 string variable No

non-null-terminated UTF-16 string variable No

TABLE I: All data types Ramblr currently recognizes.

alyzing instruction and data access patterns during CFG
recovery and localized value-set analysis.

Strings. ASCII strings and Unicode strings. Identified by
propagating types from known string manipulating func-
tions (like strlen, strcpy, etc.) and scanning print-
able characters.

Jump tables. Jump tables, from indirect jump resolution.
Arrays of primitives. These are recognized by performing

an intra-function data dependence analysis and localized
value-set analysis.

B. Data Block Sanitization

All data blocks recognized from the previous step are
sanitized to avoid overlapping data. The requirement is simple:
any identified data block should not overlap with another
identified data block. Data block overlapping arises when
one data block is part of another data block or due to a
misidentification occurring during data type recognition. The
first case is common, and is easy to handle - Ramblr simply
merges the two data blocks. Handling the second case is
more difficult, as it is not always clear which data blocks are
misidentified, or both of them are misidentified. We discuss
ways to handle misidentification in Subsection VI-C.

C. Handling Misidentification

Misidentification of data blocks usually arises from the
following scenarios:

A data block being accessed in multiple ways. A data
block might be accessed in a different manner in
different places. Consider Listing 7 as an example:
the personal_info struct is accessed as a whole
in function zero_fill(), and then each field of
the struct is accessed individually later. During data
identification and type recovery, multiple data blocks
spanning personal_info are seen, and they have
conflicting types: the one accessed from zero_fill()
is a 12-byte “unknown” block, while the other one
accessed from initialize() contains two integers
and one pointer-array of length 1.

Failure in localized value-set analysis. Due to the fact that
our localized value-set analysis runs on a slice of the
program generated from a best-effort (and, thus, poten-
tially incomplete) data dependence analysis, the value-
set analysis might be processing incomplete code when
recovering data sizes and types. Generally, a data block
spanning from the beginning address to the maximum
address (e.g., upper bound of the section it belongs to) is
seen when such failures occur.

struct personal_info_t {
unsigned char* name;
unsigned int age;

} personal_info;

void zero_fill()
{

/* memset() is inlined by the compiler. */
memset(&personal_info, 0, sizeof(personal_info));

}

void initialize()
{

personal_info.name = "Beatrice";
personal_info.age = 25;

}

void rename(char* new_name)
{

/* from the assembly, we can only say
* personal_info.name is a four-byte integer. */
personal_info.name = new_name;

}

Listing 7: An example of a data block being accessed at
multiple locations in different ways.

The strategy we take to handle misidentification is two-
fold. First, we prioritize smaller data blocks over larger ones.
This is because, like in our example, programs tend to initialize
data in bulk, then access individual fields in the proper, type-
dependent manner. In the example of Listing 7, since the 12-
byte block identified from zero_fill() is larger than other
three blocks identified from initialize(), the latter ones
are taken as identification result. Second, we prioritize sym-
bolizable data types over non-symbolizable data types. This is
because if a piece of data is ever accessed as a symbol by the
program, then it should be treated in one during reassembly.
Since personal_info.name is identified as an integer
from rename() function and a pointer in initialize(),
we correctly prioritize the symbolizable data type.

In many cases, static analyses we perform are not sufficient
to find all data blocks used in binaries. Usually there are
gaps between identified data blocks, in which case, Ramblr
resorts to workarounds to find pointers inside, as described
later in Section VIII. Note that the static analyses performed
here significantly reduce the number of unsafe assumptions
that Ramblr has to make during symbolization, which in turn
reduces false positives.

VII. SYMBOLIZATION

During the original linking process of the target binary, all
labels in the object files are converted to absolute addresses.
During reassembly, the location of the data and code in a target
binary will likely change due to the modifications performed
on it. If there are hard-coded pointer addresses or absolute
jumps in the binary, they must be adjusted to target the new
locations of the data or code to which they used to point. In
fact, even relative jumps must be adjusted, as the insertion of
code into or removal of code from basic blocks will change
the offsets of basic blocks from one another.

The assembler can make these adjustments during the
reassembly step (see Section IX), but it needs to be provided
the information of what references reference which locations.
To do this, we convert these references from hard-coded

8



-O0 -O1 -O2 -O3 -Os

0

0.2

0.4

0.6

0.8
Po

rt
io

n
of

In
te

ge
rs

in
B

in
ar

ie
s

0-28 28-216 216-224 224-232 Within binary

Fig. 2: Distribution of integers (instruction operands and data)
in the 32-bit Coreutils and CGC datasets. (The first four
buckets exclude integers within the binary.)

numerical references (absolute addresses or relative offsets)
to symbols. This procedure, called Symbolization, converts
absolute addresses back to labels, allowing relocation of the
binary during the reassembly step.

However, not all immediate values should be converted
to symbols, i.e., symbolized. We call all immediate values
that must be symbolized in reassembling symbolizable imme-
diates, and all other immediates (i.e., actual constants) non-
symbolizable immediates. A successful binary reassembling
requires that all symbolizable immediates are converted to
correct symbols, and none of the non-symbolizable immediates
are converted.

Symbolizable immediates exist in both code and data. In
code, symbolizable immediates must be part of instructions,
used as pointers pointing to either code or data. In data,
symbolizable immediates are integers that are of machine’s
bit-width, which is also used as pointers pointing to either
code or data.

Figure 2 illustrates a distribution of integers in an x86
binary. It is worth noting that most integers fall in the range
between the beginning and the ending of memory regions of
the binary, because those integers are used as code or data
references. If all immediate values falling in the range or
memory regions are symbolizable, and all immediate values
falling outside are non-symbolizable, then symbolization is
simply mapping those values within the range into symbol
references. This is a common case, but it is not the general
case. In Section III, we described several challenges that cause
mis-classified symbols and result in broken reassembled bina-
ries. In this section, we detail how Ramblr surmounts these
challenges to properly handle binaries that current techniques
fail to reasssemble.

A. Base Pointer Reattribution

Conceptually, a pointer is a reference to a memory location.
At some point in the life of the program, it will be dereferenced
so that value located at the memory location it references
is retrieved, or used as a jump target. If a pointer is never
dereferenced or used as a jump target anywhere in the binary,
it is the same as an integer. For the purpose of reassembling,

the ideal case is that all integers (including immediate operands
or integers in data) in the binary can be categorized into
two groups solely based on their values, which is described
as classification in symbolization in Uroboros [25]. Their
approach, in short, symbolizes integers to point to offsets in
each memory region of the binary as long as the value of the
integer falls into that region. If the integer does not fall into
any memory region, it is marked as an integer, and will not
be symbolized.

The original approach seems plausible. However, it does
not always hold in real-world binaries, especially in bina-
ries compiled with optimization enabled, due to constant
propagation and constant folding performed during compiler
optimization (as described in Section III. Consider the sample
C code shown in Listing 8, and its assembly shown in Listing 9
compiled by gcc with flag -O1. For the ease of understanding,
some unnecessary assembly lines are omitted, and the C code
is put on top of each corresponding line of assembly.

int counters[2] = {0};

int main()
{

int input;
input = getchar();
switch(input - 'A')
{

case 0:
puts("option A");
break;

case 1:
puts("option B");
break;

default:
puts("Unknown option.");
_exit(1);

}
counters[input - 'A'] ++;

}

Listing 8: An example of a base pointer pointing to outside of
any memory region.

.text
; input = getchar();
80484ff call __IO_getc
8048504 mov ebx, eax
; switch(input - 'A')
8048506 cmp eax, 0x42
8048509 jz short 0x8048523
...
; counters[input - 'A'] ++;
8048557 add DWORD PTR 0x8049f30[ebx*4], 1

.bss
; int counters[2] = {0};
804a034 counters[0]
804a038 counters[1]

Listing 9: The assembly manifest of Listing 8, compiled by
gcc with -O1.

The instruction at offset 0x8048557 increments the dword
[0x8049f30+ebx×4] by 1, where ebx holds the option letter
(either “A” or “B”) from user input. Due to optimizations, the
pointer 0x8049f30 comes from address of the counters
array (0x804a034), minus 4×0x41, where 0x41 is the ASCII

9



code of character “A”. Since the integer value of this pointer
does not fall into any memory region defined in this binary, it
will be viewed as non-symbolizable by the original approach,
and consequently the reassembled binary is functionally bro-
ken. The problem can be even worse: a symbolizable integer
having, due to optimizations, a value inside the .rodata
section might actually be pointing to the .bss section when
being dereferenced. Such cases, which cause extremely hard-
to-detect symbolization mis-classifications, are not rare in
binaries compiled with optimization enabled.

To tackle this problem, we adopt a different approach.
Instead of checking if the integer falls into any predefined
memory regions of the binary, we enlarge each memory region
by some amount, both in the beginning and the end, and check
if the integer falls into any of the enlarged memory regions.
This is used as a pre-filter to identify potential cases of mis-
classification due to constant folding. Empirically, we enlarge
each memory region by 4KB.

For each symbolizable integer that matches our pre-filter,
a forward slice is computed in the intra-function data depen-
dence graph, until a dereferencing site of any value depending
on the integer is reached. Then value-set analysis is performed
on the slice, from the beginning to the dereferencing site, and
an address (expressed as a value-set in VSA) is obtained.
At this point, since the pointer must be valid when it is
dereferenced, we can reasonably infer that the original sym-
bolizable integer must point to the same memory region as this
address belongs to. This approach not only makes it possible
for Ramblr to correctly handle the example we described
above (where the value of the pointer no longer falls within
the bounds of the binary), but also finds and fixes cases where
a base pointer points to one memory region, but in fact it
should be pointing to another memory region in the binary.

B. Data Consumer Check

After previous steps, all immediates and constant values
should be categorized into two groups: symbolizables and non-
symbolizables. Ramblr is normally guaranteed to be correct
as long as the above categorization is perfect. However, there
are certain scenarios where categorization fails. Such scenarios
are rarely seen in normal binaries, but arise when a binary
implements unusual behavior, such as pointer decryption,
custom pointer construction (e.g., adding two integers together,
then converting the result to a pointer and dereferencing it),
etc. We developed a data consumer check analysis that detects
these scenarios in two ways:

1) For each non-symbolizable integer, data consumer check
performs an intra-function data dependence analysis to
determine if it is used as a pointer or a jump target later
without involving any symbolizable integer. Specifically,
the requirement to avoid involvement of any symboliz-
able integers excludes the pointer offset case from the
pointer construction case. The former is already handled
by making the base pointer properly symbolizable. The
latter, on the other hand, results in a symbolization mis-
classification and a broken binary. Intuitively, building
a pointer out of integers, although acceptable, is an
uncommon behavior, and we have found no way for
it to be safely handled, in the general case, by binary
reassembling.

2) For each symbolizable integer, the data consumer check
performs an intra-function data dependence analysis on
it and examines if any “unusual” operation is applied on
it. Unusual operations include operations besides add and
subtract (which are used for pointer offsetting and can
be supported by reassembling). If hard-coded pointers
undergo such operations, we assume that the binary is
doing something unusual that reassembly cannot handle.

Reassembling immediately terminates when any of the
cases above are found, as the reassembled binary would
otherwise likely to be broken.

An example of pointer encryption is shown in Listing 10.
A pointer in the binary is encrypted before use by XORing
with a static number 0xdead1337. It is loaded into register
eax and decrypted before being used as a call target. Data
consumer check recovers a data dependence graph with respect
to the integer 0xdeed1137 loaded at instruction 0x400100.
This analysis detects that two non-symbolizable integers are
XORed, and then used as a jump target. Data consumer check
deems this binary to be unsafe for reassembling, and terminates
reassembling right away.

It is important to note that, unlike prior techniques,
Ramblr is able to detect these cases and avoid producing
a broken reassembled binary.

.text
400100 mov eax, DWORD PTR [0x600010]
400105 xor eax, 0xdead1337
40010a call eax ; calling address 0x400200

.data
600010 0xdeed1137

Listing 10: An example of pointer decryption using a static
key.

VIII. FAST WORKAROUNDS

The systematic approach described in previous sections
uses data dependence analysis and value-set analysis to offer
a level of functionality guarantee for the reassembled binary.
However, those analyses, along with the CFG recovery re-
quirement, are still inevitably time-consuming on real-world
binaries. In certain cases, where abundant test cases exist
for the original binary and checking the functionality of the
reassembled binary by running those test cases can be done
quickly, some ad-hoc alternatives can be applied instead of
the Content Classification and Symbolization steps of our
systematic approach. This allows binary reassembling be done
almost instantly, at the cost of some functionality guarantee.

This set of what we term “fast workarounds”, along with a
discussion of their compromises on the functionality guaran-
tees of the reassembled binary, are presented and discussed
in this section. We measure the resulting correctness and
the runtime of both the systematic approach and the fast
workarounds in Section X.

A. Fast Data Type Recognition

In order to identify data types, especially to get the sizes
of arrays, our systematic approach leverages localized static

10



analysis, which is accurate but heavyweight. An alternative
approach is to guess data types based solely on the values
of those data, which is way faster, and still maintains an
acceptable accuracy for reassembling.

We implement a series of fast data type guessing strategies
in Ramblr:

Floating point numbers. Our type guessing strategy for
floating point numbers does a scan of the disassembly
to identify obvious cases of data being used as floating
points.

Pointer arrays. One or more consecutive integers of machine
bit-width that points to any pre-defined memory region.
We still apply a fast version of base pointer reattribu-
tion on pointer arrays, allowing for the identification of
pointers that are, ostensibly, not pointing to any memory
region due to compiler optimization. We treat individual
pointers as a single-element pointer array.

Null-terminated Unicode strings. Any fully-printable con-
secutive sequence of valid Unicode characters, ending
with two null bytes (by Unicode spec), is recognized as
a null-terminated Unicode string. The minimal length is
four characters.

Null-terminated ASCII strings. Any fully-printable consec-
utive byte sequence ending with a null byte is recognized
as a null-terminated ASCII string. The minimal length is
four bytes.

Sequences. Any arithmetic progression of bytes, shorts, or ints
is recognized as a sequence. The minimal length is five
elements.

Integers. We identify remaining “lone” integers by detecting
integer-sized gaps in the remaining disassembly. This has
no effect on the functionality of the reassembled binary,
but it makes the disassembly more readable.

Unknown data. A linear sweep is performed on the entire
non-executable memory region, and all gaps (bytes not
belonging to any recognized data blocks) are identified
as unknown data blocks.

Note that the order of applying these guessing strategies
matters. For example, we cannot apply the “unknown data”
identification strategy before other strategies are applied, oth-
erwise all bytes will be identified as unknown. We apply these
strategies in the order listed above.

Ramblr’s data guessing is easily extensible: users can add
more type guessing strategies with respect to the nature of
binaries to be reassembled, which will benefit the symbol-
ization procedure by lowering potential misidentification of
symbolizable immediates. If a binary embeds, for example, a
PDF as a resource, a “PDF file” identification strategy can be
easily added.

B. Fast Base Pointer Reattribution

As discussed previously in this paper, one issue that occurs
during symbolization is that an immediate holding a value
belonging to one memory region (or even outside any memory
region) actually points to another memory region when deref-
erenced. This is generally caused by compiler optimizations.
The issue is addressed by our base pointer reattribution in the
systematic approach, involving intra-function data dependence

tracking and value-set analysis. These analyses are both expen-
sive. Given that an immediate being used as a pointer must be
valid (i.e., must point to the appropriate memory region at
dereferencing time), we perform a forced concrete execution
on any path starting from the source of the immediate and
ending at the dereferencing site that depends on the immediate
value. Then, we symbolize the immediate value as an offset to
the beginning of the memory region that the final dereference
was targeting. For the sake of performance, we only process
immediate values that are not trivially identifiable as belonging
to any memory region.

The fast base pointer reattribution allows us to avoid sym-
bolization false negatives by correctly detecting immediates as
symbols in cases where they would otherwise be ignored.

IX. REASSEMBLY

The reassembling procedure is straightforward. Taking re-
sults from symbolization, we first assign labels for every sym-
bol reference we recovered, and then replace all symbolizable
immediate values in each instruction and each data region with
corresponding labels. The resulting reassembled disassembly
is output into a single assembly file, to which the user can
apply their own patches as needed. Finally, an off-the-shelf
assembler is used to assemble the resulting assembly into a
reassembled binary.

Theoretically, the assembly syntax can be either Intel or
AT&T. Ramblr supports emitting either syntax, however, we
find that Clang (from version 4.4 to the latest version 4.8)
cannot support certain Intel-style instructions. Neither GCC
nor Clang has issues supporting assembly in AT&T syntax.
Therefore, Ramblr defaults to AT&T syntax. For the purpose
of transparently supporting user patches written in a different
syntax than the target outputting syntax, we also implement a
syntax converter from Intel to AT&T style.

X. IMPLEMENTATION AND EVALUATION

This section covers the implementation of our prototype,
Ramblr, describes the datasets that we use, and presents its
evaluation. We evaluate the correctness of Ramblr against
ground truth produced during original compilation of the
binaries, compare it against Uroboros on two datasets, and
discuss analysis time and execution overhead in the resulting
binaries.

A. Implementation Overview

We use angr, an open-source binary analysis framework,
as the platform for reassembling. Ramblr is implemented
in Python as an angr analysis, and utilizes other publicly-
available analyses routines in angr. All of our CFG re-
covery improvements are done on top of angr’s CFGFast
analysis. Capstone is used for performing the disassembly
of instructions [17]. Our prototype works on x86 and x86-
64 ELF binaries. However, as angr is platform-independent,
there are no fundamental limitations preventing an extension
of Ramblr to other architectures. All of our evaluations are
performed under PyPy 5.3.1 in Ubuntu Server 16.04 LTS.

The entire Ramblr toolchain, including Ramblr itself
and our assembly syntax converters, is open sourced. Ramblr

11



Dataset Total # of binaries Optimization level # of binaries

Coreutils 106

O0 106
O1 106
O2 106
O3 106

Ofast 106
Os 106

CGC 143

O0 141
O1 117
O2 116
O3 116

Ofast 116
Os 119

TABLE II: Number of binaries of each dataset.

is included in angr, while other parts of the toolchain are
included in a binary patching platform called Patcherex,
which was used by the third-place winning team in the DARPA
Cyber Grand Challenge [20].

B. Dataset

We use two sets of binaries for the evaluation. The first set
is Coreutils 8.25.55-ff217, which includes 106 different
binaries that form much of the base of a Linux system. Accord-
ing to [25], Coreutils is one of the binaries collections used
to evaluate Uroboros, and allows us to compare our approach to
Uroboros. To test the relative versatility of the two approaches
in the presence of advanced binary constructs, we compile each
program in x86 and x64, with six different optimization levels,
including O0, O1, O2, O3, Ofast, and Os, with GCC 5.4.1
in our testing environment.

The second dataset is a collection of 143 binaries from
the Qualification Event (CQE) and the run-up to the Final
Event (CFE) of the DARPA Cyber Grand Challenge (CGC),
representing all CGC binaries released before August 2016.
CGC binaries are stripped, self-contained x86 binaries that
do not rely on any dynamically-linked libraries. We compile
each program with six different optimization levels, including
O0, O1, O2, O3, Ofast, and Os, with Clang 4.4 (the only
supported compiler for CGC) in the DECREE VM provided
by DARPA.

Note that some binaries in both datasets simply do not
work (crashing with segmentation faults, failing test cases, etc.)
when compiled with certain optimization levels. Those binaries
are removed from each dataset. We also remove all multi-CB
binaries from the CGC dataset as it is difficult to tell exactly
which one of the full set of binaries is the culprit when a
test case fails. The final count of binaries our datasets across
different compilation flags is shown in Table II. The entire
dataset is available upon inquiry.

Test Cases. Both Coreutils and CGC binaries come with
abundant test cases, making them well-suited for evaluating
the functionality of reassembled binaries. We run test cases on
every reassembled binary, and mark a binary as broken if any
test case fails.

C. Pre-evaluation

The authors of Uroboros [25] open-sourced their prototype
implementation to the community [19]. We used their code
for evaluating their approach in our comparative evaluation.
However, we had to make several augmentations and bug fixes

ID Changes

1 Add around 20 unsupported instruction opcodes
2 Remove duplicated labels in generated assembly file 6

3 Change input parsing logic to support output from newer readelf
4 Fix a bug in function alignments filtering
5 Add “-ocamlopt opt” to build script
6 Make some changes to support statically-linked binaries

TABLE III: Changes we made to Uroboros prototype

to perform a comparative evaluation on the Coreutils dataset
and on CGC binaries. To the best of our knowledge, these
changes and bug fixes, as listed in Table III, do not change the
behavior and expected output of Uroboros. We will push these
improvements upstream to the original Uroboros repository on
GitHub.

Uroboros allows for the deactivation of some of its assump-
tions, which, as discussed previously, are overly restrictive for
real-world cases. As we discussed previously in Section III-A,
assumption 2 would prevent any modification of data sections.
Therefore during evaluation, we enable assumptions 1 and 3
and disable assumption 2 (by specifying arguments -a 3) in
order to obtain a comparative result.

For Uroboros, we use non-stripped binaries as input, as
they rely on symbols in non-stripped binaries for function
identification. Ramblr directly takes stripped binaries as input
and carries out its own analyses to recover the necessary data.

D. Symbolization Correctness

First, we evaluate the correctness of Ramblr’s symboliza-
tion step on our dataset, with and without the use of its Fast
Workarounds (implemented in Ramblr Fast). To do this,
we collect the ground truth of mappings between labels and
addresses from the linker ld during the original compilation
of the binary, and compare this ground truth against the
immediate values Ramblr symbolizes. It is important to note
that Ramblr does not utilize the ground truth during its
operation – it is only used for evaluation purposes. As we
are interested in the potential damage to reassembled binaries,
binaries that the tools opted out of reassembling were not
included in this evaluation.

The mis-classifications represented by these results are
roughly a measure of how likely the approach is to break
the binary, as each mis-classification could result in a broken
reference. When there are no mis-classifications in a given
binary, the reassembled binary is guaranteed to work, except
for in the scenarios described in Section VII-B. We could not
make this evaluation comparative to Uroboros, as we were
unable to extract this information from the Uroboros prototype.

The results are shown in Table IV. While both Ramblr and
Ramblr Fast achieves an extremely low mis-classification
rate, the former performs better than the latter, as expected.

E. Comparative Evaluation - Correctness

We compare Ramblr against Uroboros by evaluating
both tools (plus Ramblr with Fast Workarounds) against our
datasets. We run Uroboros, Ramblr, and Ramblr Fast on

6Clang displays error messages and terminates at duplicated labels, while
GCC does not seem to care as long as duplicated labels do not reference
different addresses.

12



Arch Dataset Opt. Level Solution Total References False Negatives False Negative % False Positives False Positive %

i386 CGC

O0 Ramblr 500682 0 0 0 0
Ramblr Fast 500682 0 0 0 0

O1 Ramblr 501613 0 0 0 0
Ramblr Fast 501613 0 0 0 0

O2 Ramblr 505409 0 0 0 0
Ramblr Fast 505409 12112 2.39 15 0.02

O3 Ramblr 505813 0 0 0 0
Ramblr Fast 505813 12120 2.39 15 0.02

Os Ramblr 469512 3 0.0006 0 0
Ramblr Fast 469512 12064 2.56 15 0.02

Ofast Ramblr 505828 0 0 0 0
Ramblr Fast 505828 12120 2.39 15 0.02

i386 Coreutils

O0 Ramblr 128065 0 0 0 0
Ramblr Fast 128065 0 0 0 0

O1 Ramblr 124555 0 0 0 0
Ramblr Fast 124555 0 0 0 0

O2 Ramblr 122215 0 0 0 0
Ramblr Fast 122215 0 0 0 0

O3 Ramblr 192863 0 0 0 0
Ramblr Fast 192863 4 0.0021 0 0

Os Ramblr 83600 1 0.0012 0 0
Ramblr Fast 83600 1 0.0012 0 0

Ofast Ramblr 193317 0 0 0 0
Ramblr Fast 193317 0 0 0 0

x86 64 Coreutils

O0 Ramblr 125005 4 0.00319 0 0
Ramblr Fast 125005 4 0.00319 0 0

O1 Ramblr 123156 4 0.0032 0 0
Ramblr Fast 123156 4 0.0032 0 0

O2 Ramblr 113651 4 0.0035 0 0
Ramblr Fast 113651 4 0.0035 0 0

O3 Ramblr 171302 4 0.0023 0 0
Ramblr Fast 171302 4 0.0023 0 0

Os Ramblr 82592 4 0.0048 0 0
Ramblr Fast 82592 4 0.0048 0 0

Ofast Ramblr 171849 8 0.0047 0 0
Ramblr Fast 171849 12 0.0070 0 0

TABLE IV: Symbolization ground truth for different approaches across different datasets. Since reassembly failures are caused
by mis-classification of symbols, we measure the rate at which symbols are mis-classified against ground truth provided by the
linker during compilation.

each binary, and then run test cases against the reassembled
binary to see if it still functions correctly. Using this data, we
compile the rate of failures, which we present in Table V.

We evaluate both flavors of Ramblr on all optimization
levels. However, Uroboros’ failure rates increase to meaning-
less levels for optimizations above O1, so we only present O0
and O1 results. Furthermore, the Uroboros prototype that we
initially used completely fails to reassemble 64-bit binaries7.
Regardless of the reason, we were only able to carry out the
comparative evaluation on 32-bit binaries. For CGC binaries,
we evaluate all optimization levels on all tools.

As demonstrated in Table V, both Ramblr and Ramblr
Fast are strictly better than Uroboros. With optimizations
disabled, Uroboros breaks 22.64% of the Coreutils binaries,
which is significantly worse than Ramblr and Ramblr
Fast, which break none. Enabling optimization, this goes up
to 56.61% for Uroboros and still none for Ramblr.

On the CGC dataset, Uroboros breaks 15% to 25% op-
timized binaries, which means that, when applied on real-
world binaries, one out of four binaries will require manual
inspection, intervention, and repair. For larger binaries, this is
infeasible. By comparison, Ramblr achieves a success rate of
over 98% across all levels, over 99% for optimization levels
below O3, and 100% for unoptimized binaries.

7Upon contact, authors of Uroboros confirmed that there was a bug in their
prototype, which causes misalignment of data sections in generated x86-64
assembly. Commit 45f018a was made to address this issue.

Correctness of Uroboros. The fact that Uroboros breaks
many Coreutils binaries is unexpected, as it contradicts the
claim in the Uroboros paper that no broken Coreutils binary
was generated by Uroboros under any assumption. We investi-
gated the issue, and found out the culprit was differing versions
of GCC. Uroboros was evaluated on all Coreutils binaries
compiled by the GCC version shipped with Ubuntu 12.04 LTS,
which was GCC 4.6. Our Coreutils binaries are compiled by
GCC 5.4.1. The prototype of Uroboros has trouble dealing
with some memory references (e.g. __JCR_LIST__) in some
binaries, and those references do not exist in ones generated by
GCC 4.6. Additionally, GCC 5 introduces new optimizations
that were not present in GCC 4, such as inter-procedural op-
timizations [9]. These optimizations more frequently produce
hard-to-handle folded constants.

We reran the evaluation on Coreutils 8.15 compiled by
GCC 4.6 shipped in Ubuntu 12.04 with the default opti-
mization level (O2), and were able to reproduce their results.
However, this reveals the fragility of the Uroboros approach.
For instance, when running the evaluation on Coreutils 8.25
with O0 under the same setting, we found out that factor
was broken due to an incorrect symbolization in data sections.

Opt-out case study. Ramblr successfully detects the
use of pointer encryption and decryption in KPRCA_00044
and opts out, while Ramblr Fast fails to detect it, and
generates a broken reassembled binary. Ramblr is the first
binary reassembly engine with this detection capability. In fact,
Ramblr was able to opt out of breaking all but one binary,
resulting in a single broken binary out of the entire dataset.

13



Dataset Opt. Level Solution Safety Opt-outs Generation Failures Test Failures Successes Total Success %

CGC

O0
Uroboros 0 3 3 135

141
95.74%

Ramblr 0 0 0 141 100%
Ramblr Fast 0 0 0 141 100%

O1
Uroboros 0 6 11 100

117
85.47%

Ramblr 1 0 0 116 99.15%
Ramblr Fast 0 0 1 116 99.15%

O2
Uroboros 0 8 22 86

116
74.14%

Ramblr 1 0 0 115 99.14%
Ramblr Fast 0 0 2 114 98.28%

O3
Uroboros 0 8 22 86

116
74.14%

Ramblr 1 0 0 115 99.14%
Ramblr Fast 0 0 2 114 98.28%

Os
Uroboros 0 6 18 95

119
79.83%

Ramblr 1 0 0 118 99.16%
Ramblr Fast 0 0 2 117 98.32%

Ofast
Uroboros 0 7 23 86

116
74.14%

Ramblr 1 0 1 114 98.28%
Ramblr Fast 0 0 2 114 98.28%

Coreutils

O0
Uroboros 0 0 24 82

106
77.36%

Ramblr 0 0 0 106 100%
Ramblr Fast 0 0 0 106 100%

O1
Uroboros 0 5 55 46

106
43.39%

Ramblr 0 0 0 106 100%
Ramblr Fast 0 0 0 106 100%

O2 Ramblr 0 0 0 106 106 100%
Ramblr Fast 0 0 0 106 100%

O3 Ramblr 0 0 0 106 106 100%
Ramblr Fast 0 0 1 105 99.05%

Os Ramblr 0 0 0 106 106 100%
Ramblr Fast 0 0 0 106 100%

Ofast Ramblr 0 0 0 106 106 100%
Ramblr Fast 0 0 0 106 100%

TABLE V: The successes and failures of reassembling binaries, with six different optimization levels. The datasets used were
the Coreutils binaries, compiled in 32-bit (due to limitations of the original Uroboros prototype), and the CGC binaries, which
are all 32-bit. The column “Safety Opt-outs” represents the number of binaries for which the tool detected that functionality
would be broken and opted out, “Generation Failures” refers to instances of the tool itself crashing during binary generation,
and “Test Failures” conveys the number of reassembled binaries that failed functionality testing.

Binary Opt. Level Size Code Size Time Time (Fast)
CROMU 00043 Os 93 KB 7.6 KB 35s 4s
NRFIN 00004 Os 344 KB 223 KB 37s 20s
EAGLE 00005 Os 5,408 KB 9.4 KB 75s 20s
NRFIN 00007 O3 233 KB 10 KB 73s 35s
KPRCA 00007 Os 91 KB 7.5 KB 93s 70s
NRFIN 00026 O0 10,768 KB 10,600 KB 525s 410s

TABLE VI: A comparison between the analysis runtimes of
Ramblr and Ramblr Fast on some binaries in the CGC
dataset.

F. Ramblr Runtime

Ramblr Fast trades functionality guarantees of the re-
sulting binaries for improved speed of the reassembling pro-
cess. For most binaries in our dataset, this is irrelevant. In fact,
the median runtime of Ramblr Fast in the CGC dataset is
2.8 seconds, compared to 3.0 seconds for Ramblr. However,
Ramblr Fast scales considerably better for large binaries.

In Table VI, we discuss the relative runtime of Ramblr
versus Ramblr Fast for the biggest CGC binaries in our
dataset. Our fast workarounds significantly decrease runtime
in all cases, but it is important to note that runtime is not
completely contingent on binary size, but rather, on the amount
of code that must be analyzed by the data classification and
symbolization steps of the systematic Ramblr approach.

G. Execution Overhead and Binary Size

In Section 6.2.1 of the Uroboros paper, the authors re-
port that binaries produced by Uroboros have execution time
overheads of up to 7 percent (although the average was under

a percent). We evaluated the binaries produced by Ramblr,
but identified no execution overhead. For most purposes, the
binaries are perfect replacements for the originals.

Likewise, Uroboros introduced a small increase in size
for their Coreutils dataset. Since unimportant sections (like
.comment) are removed by Ramblr during reassembling,
our binaries are usually smaller than the originals. Compensat-
ing for this removal, the resulting size is practically identical.

XI. DISCUSSION

While our approach improves the feasibility of real-world
binary reassembly, it is a long way from “solving” the general
issue. To focus the community’s attention on potential future
work in this field, we detail what we feel are the biggest
limitations of our technique in this section.

The infeasibility of static content classification. We
admit, and would like to stress again, that as Horspool, et al.
maintained, static content classification is infeasible [11]. Our
reassembling approach is an empirical solution that works on
many binaries whose integer distributions roughly follow the
pattern as presented in Section VII. Obviously, an easy way for
anti-reassembling is basing the binary to another base address
during linking, so immediate values belonging to memory
region of binaries collide with normal immediate values in
the binary. In that case, our approach will most likely fail and
result in broken binaries.

CFG recovery. The performance of CFG recovery may
work differently on binaries holding different features. The
technique on which our CFG recovery is based works well

14



on our tested Linux binaries compiled with GCC or Clang,
which do not generate any inline data [1]. Some compilers (like
MSVC) puts inline data into executable regions of binaries,
most notably, jump tables. While we believe our CFG recovery
and disassembly technique will work on such binaries with
the help of content classification, more work is needed in that
direction.

XII. CONCLUSION

We presented Ramblr, a tool for the disassembly, mod-
ification, and reassembly of binaries. The proposed approach
extends previous approaches to the problem of reassembling
binaries, making it possible to apply static binary modifications
to real-world binaries, even when compiler optimizations are
used. Ramblr uses a novel composition of static analyses
to characterize data contained in a binary, allowing for an
improved symbolization. In addition, the reassembly process
introduces no execution overhead in the resulting binary. The
ability to modify binaries without affecting their performance
opens a number of applications, ranging from efficient instru-
mentation to binary hardening.

ACKNOWLEDGEMENTS

We would like to thank all contributors to the DARPA Cy-
ber Grand Challenge organization (for providing an excellent
testing dataset for Ramblr), the contributors of angr, and all
our fellow Shellphish CGC team members. This material is
based on research sponsored by the Office of Naval Research
under grant number N00014-15-1-2948 and by DARPA under
agreement number N66001-13-2-4039. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation
thereon. This work is also sponsored by a gift from Google’s
Anti-Abuse group.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of DARPA or the U.S. Government.

REFERENCES

[1] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos, “An
In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries,” in
25th USENIX Security Symposium (USENIX Security ’16). Austin,
TX: USENIX Association, 2016, pp. 583–600.

[2] G. Balakrishnan and T. Reps, “Analyzing Memory Accesses in x86
Executables,” in International Conference on Compiler Construction,
2004, pp. 5–23.

[3] A. R. Bernat and B. P. Miller, “Anywhere, Any-Time Binary Instrumen-
tation,” in Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools (PASTE ’11), 2011, pp. 9–16.

[4] D. L. Bruening, “Efficient, Transparent, and Comprehensive Runtime
Code Manipulation,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2004.

[5] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A Binary
Analysis Platform,” in International Conference on Computer Aided
Verification, vol. 6806 LNCS. Springer, 2011, pp. 463–469.

[6] Cryptic Apps, “Hopper,” https://www.hopperapp.com/.
[7] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and

B. Demoen, “On the Static Analysis of Indirect Control Flow Transfers
in Binaries,” in Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Application, 2000, pp.
1013–1019.

[8] M. Egele, M. Woo, and D. Brumley, “Blanket Execution: Dynamic
Similarity Testing for Program Binaries and Components,” in 23rd
USENIX Security Symposium (USENIX Security ’14). San Diego, CA:
USENIX Association, 2014, pp. 303–317.

[9] GCC, “GCC 5 Release Notes,” https://gcc.gnu.org/gcc-5/changes.html.
[10] L. C. Harris and B. P. Miller, “Practical Analysis of Stripped Binary

Code,” ACM SIGARCH Computer Architecture News, vol. 33, no. 5,
pp. 63–68, 2005.

[11] R. N. Horspool and N. Marovac, “An Approach to the Problem of
Detranslation of Computer Programs,” Computer Journal, vol. 23, no. 3,
pp. 223–229, 1980.

[12] J. Kinder, “Static Analysis of x86 Executables,” Ph.D. dissertation,
2010.

[13] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation,” in Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’07), 2007, p. 89.

[14] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and
A. D. Keromytis, “Retrofitting Security in COTS Software with Bi-
nary Rewriting,” IFIP Advances in Information and Communication
Technology, vol. 354, pp. 154–172, 2011.

[15] R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi, “N-
version Disassembly: Differential Testing of x86 Disassemblers,” in
Proceedings of the 19th International Symposium on Software Testing
and Analysis (ISSTA ’10), 2010, p. 265.

[16] pancake, “radare,” http://www.radare.org/r/.
[17] N. A. Quynh. (2016) The Ultimate Disassembly Framework Capstone.

[Online]. Available: http://capstone-engine.org
[18] T. Reps and G. Balakrishnan, “Improved Memory-Access Analysis for

x86 Executables,” International Conference on Compiler Construction,
vol. 4959 LNCS, no. i, pp. 16–35, 2008.

[19] s3team. (2015) s3team/uroboros: Infrastructure for Reassembleable
Disassembling and Transformation (v 0.1). [Online]. Available:
https://github.com/s3team/uroboros

[20] Shellphish, “DARPA CGC,” http://shellphish.net/cgc/.
[21] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,

A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“(State of) The Art of War: Offensive Techniques in Binary Analysis,”
in Proceedings of the IEEE Security and Privacy, 2016, pp. 138–157.

[22] M. Smithson, K. Elwazeer, K. Anand, A. Kotha, and R. Barua,
“Static Binary Rewriting without Supplemental Information: Overcom-
ing the Tradeoff between Coverage and Correctness,” in Proceedings
- 20th Working Conference on Reverse Engineering (WCRE 2013),
R. Lämmel, R. Oliveto, and R. Robbes, Eds. Koblenz, Germany:
IEEE, 2013, pp. 52–61.

[23] Vector 35, “binary.ninja : a reversing engineering platform,” https://
binary.ninja/.

[24] M. Wang, H. Yin, A. V. Bhaskar, P. Su, and D. Feng, “Binary Code
Continent: Finer-Grained Control Flow Integrity for Stripped Binaries,”
in Proceedings of 2015 Annual Computer Security Applications Con-
ference (ACSAC ’15), 2015, pp. 331–340.

[25] S. Wang, P. Wang, and D. Wu, “Reassembleable Disassembling,” in
24th USENIX Security Symposium (USENIX Security ’15). USENIX
Association, 2015, pp. 627–642.

[26] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Securing Untrusted
Code via Compiler-Agnostic Binary Rewriting,” in Proceedings of the
28th Annual Computer Security Applications Conference (ACSAC ’12),
2012, p. 299.

[27] R. Wartell, V. Mohan, K. W. Hamlen, Z. Lin, and W. C. Rd, “Binary
Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary
Code,” in Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS ’12), 2012, pp. 157–168.

[28] J. Zeng, Y. Fu, K. a. Miller, Z. Lin, X. Zhang, and D. Xu, “Obfuscation
Resilient Binary Code Reuse through Trace-oriented Programming,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (CCS ’13), 2013, pp. 487–498.

[29] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,”
in Proceedings of the 22nd USENIX Conference on Security (USENIX
Security ’13), 2013, pp. 337–352.

15

https://www.hopperapp.com/
https://gcc.gnu.org/gcc-5/changes.html
http://www.radare.org/r/
http://capstone-engine.org
https://github.com/s3team/uroboros
http://shellphish.net/cgc/
https://binary.ninja/
https://binary.ninja/

	Introduction
	Background and Related Work
	Static Disassembling
	Content Classification
	Binary Rewriting
	Reassembleable Disassembling

	Problems with Current Techniques
	Uroboros' Assumptions
	Motivating Failure Case
	Unsurmounted Challenges

	Approach Overview
	CFG Recovery and Disassembly
	Recursive CFG Recovery
	Utilizing Meta Information
	Iterative Feedback

	Content Classification
	Data Identification and Type Recognition
	Data Block Sanitization
	Handling Misidentification

	Symbolization
	Base Pointer Reattribution
	Data Consumer Check

	Fast Workarounds
	Fast Data Type Recognition
	Fast Base Pointer Reattribution

	Reassembly
	Implementation and Evaluation
	Implementation Overview
	Dataset
	Pre-evaluation
	Symbolization Correctness
	Comparative Evaluation - Correctness
	Ramblr Runtime
	Execution Overhead and Binary Size

	Discussion
	Conclusion
	References

