
ZTDJAVA: Mitigating Software Supply Chain Vulnerabilities via Zero-Trust Dependencies

Paschal C. Amusuo †

Purdue University
Kyle A. Robinson

Purdue University
Tanmay Singla
Purdue University

Huiyun Peng
Mount Holyoke College

Aravind Machiry
Purdue University

Santiago Torres-Arias
Purdue University

Laurent Simon
Google

James C. Davis
Purdue University

Abstract—Third-party libraries like Log4j accelerate software
application development but introduce substantial risk. Vulner-
abilities in these libraries have led to Software Supply Chain
(SSC) attacks that compromised resources within the host sys-
tem. These attacks benefit from current application permissions
approaches: third-party libraries are implicitly trusted in the
application runtime. An application runtime designed with Zero-
Trust Architecture (ZTA) principles — secure access to resources,
continuous monitoring, and least-privilege enforcement — could
mitigate SSC attacks, as it would give zero implicit trust to these
libraries. However, no individual security defense incorporates
these principles at a low runtime cost.

This paper proposes Zero-Trust Dependencies to mitigate SSC
vulnerabilities: we apply the NIST ZTA to software applications.
First, we assess the expected effectiveness and configuration
cost of Zero-Trust Dependencies using a study of third-party
software libraries and their vulnerabilities. Then, we present a
system design, ZTDSYS, that enables the application of Zero-Trust
Dependencies to software applications and a prototype, ZTDJAVA,
for Java applications. Finally, with evaluations on recreated
vulnerabilities and realistic applications, we show that ZTDJAVA
can defend against prevalent vulnerability classes, introduces
negligible cost, and is easy to configure and use.

I. INTRODUCTION

Integrating third-party libraries (TPLs) such as Log4j as
dependencies accelerates software application development but
introduces risks [1]–[3]. Dependencies are implicitly trusted
by default and execute with the application’s permissions.
Vulnerabilities in dependencies, termed software supply chain
(SSC) vulnerabilities [4], may cause undesirable application
behavior [5]. They result in SSC attacks [6]. To mitigate
analogous risks from assets in cloud systems and corpo-
rate networks, the US National Institute of Standards and
Technology (NIST) has recommended [7] (and industry [8]–
[10] and academia have adopted [11]–[14]) the Zero-Trust
Architecture (ZTA) to place zero implicit trust in system
actors. We propose applying ZTA within a software application
to mitigate the risk of SSC vulnerabilities (Figure 1).

Many security defenses reduce the risks of using TPLs
within an application. However, none sufficiently mitigates
SSC vulnerabilities as they do not enable the ZTA principles of
secure resource access, continuous monitoring, and least priv-
ileges for the application’s dependencies and at low runtime
cost (§II-C). Application-level sandboxes [15]–[18] do not
operate on dependencies. Import-restriction-based [19]–[21]
and debloating-based [22], [23] approaches do not validate

†Some work performed as a Student Researcher at Google.

Fig. 1: The Zero-Trust Dependencies (ZTD) concept. To mitigate
attacks exploiting vulnerable dependencies, a ZTD system provides
secure access via runtime authorization, makes authorization deci-
sions using a least-privileges access policy, and facilitates continuous
monitoring of unexpected accesses.

when dependencies access resources. Existing isolation-based
techniques [24]–[27] do not enable discovery of dependencies’
least privileges, and they introduce high runtime costs.

This paper proposes Zero-Trust Dependencies (Figure 1),
a concept that applies NIST’s Zero-Trust Architecture to an
application’s dependencies to prevent software supply chain
attacks. We begin with a feasibility study of the Zero-Trust
Architecture idea, clarifying its suitability and design consider-
ations through a study of software supply chain vulnerabilities
and application dependency chains (§III). Motivated by our
findings, we state the threat model (§IV-A), propose Zero-
Trust Dependencies as a mitigation (§IV-B), and design a ZTD
system, ZTDSYS to enable secure resource access (§IV-D),
discover least privileges (§IV-E), and continuously monitor
dependency behaviors (§IV-F).

We implement a prototype, ZTDJAVA, for Java applications
(§V). We evaluate its effectiveness on recreated vulnerabilities,
micro and macro performance costs, and the effort to audit
policies of real applications. Our results show that fine-grained
enforcement of a library’s observed behavior (representing its
least privileges) prevents all reproduced vulnerability exploits.
ZTDJAVA introduces much lower overhead than the state-of-art
for Java. Additionally, only an average of five dependencies
in each application require explicit policy specification.

In summary, we contribute:
• A feasibility study of applying Zero-Trust Architecture

https://orcid.org/0000-0003-1001-525X
https://orcid.org/0009-0004-6365-6645
https://orcid.org/0009-0002-9108-1514
https://orcid.org/0009-0003-2574-5316
https://orcid.org/0000-0001-5124-6818
https://orcid.org/0000-0002-9283-3557
https://orcid.org/0000-0001-7893-547X
https://orcid.org/0000-0003-2495-686X

principles within a software application (§III).
• The Zero-Trust Dependencies concept and our ZTDSYS

design for mitigating SSC vulnerabilities (§IV).
• A prototype for Java, ZTDJAVA (§V), and an evaluation of its

cost and effectiveness on realistic Java applications (§VI).
Significance: Operationalizing a recommended security ar-
chitecture will enable its adoption in software engineering,
leading to more secure applications. Our feasibility study,
design, and evaluation will inform engineers of the utility and
cost of adopting this security architecture in their applications.

II. BACKGROUND

Here we define software supply chains and vulnerabilities
(§II-A), introduce Zero-Trust Architecture as a mitigation
(§II-B), and discuss limitations of existing defenses (§II-C).

A. Software Supply Chains (SSC) and Vulnerabilities

From a technical standpoint, Software Supply Chains en-
compass the systems and devices involved in producing a
final software product [28]. This includes the application’s
source code, build tools, final packaged artifact, and third-
party libraries used as dependencies [29]. The use of third-
party libraries introduces new attack surfaces. They can be
deliberately [30]–[32] or unintentionally (e.g., Listing 1) intro-
duced. These vulnerabilities are Software Supply Chain (SSC)
vulnerabilities [4] and they enable SSC Attacks [6], [33] that
compromise the host system and lead to consequences such
as execution of arbitrary code, file manipulation and exfiltra-
tion of sensitive data. SSC attacks typically succeed because
vulnerable dependencies inherit the application’s permissions,
obtaining more privileges than they need in typical use [20].

SSC vulnerabilities can be mitigated by securing the struc-
ture and use of a software supply chain. Per Okafor et al. [28],
secure supply chains need transparency (where dependencies
come from and what risks they contain), validation (reliability
of dependencies), and separation (dependency isolation to
avoid domino effects). Transparency can be improved through
techniques such as software bills of materials (SBOMs) [34]
and the Open-Source Vulnerabilities project [35]. Validity
is promoted through software signing [36], [37] to verify
the provenance of third-party libraries and the end-to-end
security model [38] that prevents unauthorized alteration of
source code. Our zero-trust dependencies concept, inspired by
NIST’s zero-trust architecture, improves separation between
dependencies.

B. Zero-Trust Architecture as a Conceptual Framework

§II-A suggests that SSC vulnerability exploits succeed be-
cause dependencies are granted permission to access more re-
sources than they typically need. The Zero-Trust Architecture
(ZTA) [7], [40] protects access to resources in the context
of a network and may analogously effectively mitigate SSC
vulnerabilities. As defined by the USA’s National Institute of
Standards and Technology (NIST) in SP-800-207 [7], Zero-
Trust Architecture is a set of cybersecurity concepts focused
on protecting services (resources) within a system, grants no

1 public void exploitTarget() {
2 String command = // exploit command
3

4 HttpUrlConnection con =
5 new URL(URL).openConnection();
6

7 con.setRequestMethod("POST");
8 con.setRequestProperty(
9 "spring.cloud.function.routing-expression",

10 "T(java.lang.Runtime).getRuntime().exec
11 (\"+command+\")");
12

13 int response = con.getResponseCode();
14 }

Listing 1: An exploit for a code Injection vulnerability (CVE-2022-
22963) in Spring Cloud Function (SCF) [39]. On lines 8-11, an
attacker executes a malicious command by using SCF’s routing-
expression functionality. Executing shell commands is not a privilege
SCF needs, and thus would be blocked by a Zero-Trust Architecture.

implicit trust to any user or assets (subjects) and requires
subjects to gain explicit authorization to access any resource.
Following Google [8], we summarize ZTA in 3 principles:
1) Secure and Context-based Access: Every access to a re-

source should be authorized.
2) Continous Monitoring: Organizations should monitor the

state and activities of the subjects and use the insights
gained to improve the creation and enforcement of policies.

3) Least-Privilege Policy Enforcement: Access policies should
grant minimum access rights to subjects.

The Zero-Trust Architecture has been applied to security-
sensitive domains [41] including network infrastructure [42],
[43] and cloud systems [8], [9], [11]. When applied to software
applications, ZTA can mitigate SSC vulnerability exploits
as it authorizes only legitimate access to operating system
resources, based on a dependency’s minimum privileges set.

C. Limitations of Existing Application Security Defenses

Existing security defenses reduce some risks from third-
party libraries, but do not prevent SSC vulnerability exploits as
they do not enforce zero-trust principles on all dependencies.
We summarize these techniques in Table I.

Application-level defenses enforce security policies on the
application [15], [18], [44] or its logical units [45]–[47]. How-
ever, as dependencies inherit the application’s permissions,
vulnerable dependencies may compromise sensitive system
resources by leveraging permissions provided to the appli-
cation. In addition, specifying security policies that enforce
least privileges in modern applications is difficult and error
prone [49], [50]. The Java Security Manager (JSM) [18], an
application-level defense for Java applications, allows speci-
fying fine-grained policies for secure resource access in Java
applications. It was deprecated in 2021 due to lack of use,
ascribed to its brittle permission model, difficult programming
model, and poor performance [51].

Dependency-level defenses operate on dependencies and
can constrain their behaviors at runtime. We distinguish three
kinds. Import-restriction-based defenses [20], [21], [48] inter-
cept dependencies as they are imported into an application and

Table I: Analysis of existing security defenses by ZTA principles.
Columns indicate if each technique family provides secure resource
access, supports least priv. discovery and enforcement, enables con-
tinuous monitoring for dependencies, and has low runtime costs.

Family Design Res.
Ac-
cess

Lst-
Prv.
Enf.

Dep.
Mon.

Low
Cost

[15], [16], [18], [44] Access
control ✓ ✗ ✗ ✓

[45]–[47] App
decomp. ✓ ✗ ✗ ✓

[20], [21], [48] Import
restrict. ✗ ✗ ✓ ✓

[22], [23] Debloating
✗ ✗ ✓ ✓

[24]–[27] Isolation
✓ ✗ ✓ ✗

ZTDJAVA Access
control ✓ ✓ ✓ ✓

remove unauthorized functions. Meanwhile, debloating-based
defenses [22], [23] remove unused or vulnerable functions
from a library’s source code. These designs prevent mali-
cious code introduction in dependencies and introduce lower
run-time costs. However, they do not validate dependency
resource accesses and cannot prevent exploits of accidental
vulnerabilities where the attacker only controls data in the
app. Isolation-based defenses [24]–[27] execute dependencies
in isolated compartments and can enable secure access to
resources. However, they face low adoption rates [52], in part,
due to their high performance overhead and the effort required
to discover the least privileges of a compartment.

III. ZERO-TRUST ARCHITECTURE FEASIBILITY ANALYSIS

Previous works have demonstrated the feasibility of secure
context-based access [26], [27] (ZTA principle 1) and depen-
dency monitoring [20], [27] (ZTA principle 2). However, no
relevant security defense (§II-C) has assessed the feasibility
of least-privilege definitions for dependencies.

This section measures two distinct aspects of applying the
principle of least-privilege policy on dependencies. First, ZTA
requires that SSC vulnerability exploits on a dependency
involve resources not needed by that dependency, so that
a least-privilege policy would mitigate these vulnerabilities
without impacting the application. Second, ZTA requires that
the cost of correctly configuring least-privilege policies be
reasonable, e.g., that only a few dependencies need privileges
and require policy specification. Thus we ask:
RQ1 What proportion of Java SSC vulnerabilities could be

mitigated by enforcing least-privilege policies?
RQ2 What proportion of dependencies will need explicit

policy authorization in an application?
To answer these questions, we measure SSC vulnerabilities

and third-party libraries in the Java ecosystem.
Why Java? We situate this feasibility study, and our sub-

sequent embodiment of ZTD, within Java. Java is a popular
programming language [53], [54], and SSC attacks have been
the most impactful in the Java ecosystem. For example, the

Log4j vulnerability affected millions of Java applications [55]
with estimated costs in the billions [56]. While there have
been SSC attacks in other ecosystems like JavaScript and
Python [57], their impact has been smaller due to their smaller
server-side industry footprints.

Novelty: Prior works have studied the life cycle [58],
[59] and dependency-tree propagation behaviors [60], [61] of
SSC vulnerabilities. This study instead describes how SSC
vulnerabilities access resources in third-party libraries.

A. Methodology

1) RQ1: We evaluated RQ1 by assessing the proportion
of Java SSC vulnerabilities that involved access to operating
system resources and examining whether they can be mitigated
by coarse or fine-grained least-privilege policy enforcement.

We study recent and high-severity vulnerabilities in popu-
lar Maven Central libraries, as they represent prevalent and
high-impact threats to applications. We obtained the 4462
vulnerabilities from the Open-Source Vulnerabilities (OSV)
database [35]. We filtered for vulnerabilities that were pub-
lished within the last 5 years, had a CVSSv3 rating of high or
critical, and affected the top 10,000 depended-upon Maven
Central libraries from the Ecosystems database [62]. This
yielded 539 vulnerabilities in 252 unique libraries.

To answer RQ1, we randomly analyzed 118 of the 539
vulnerabilities (22%) †. This number is comparable to the
number of vulnerabilities prior works [63], [64] studied. First,
we classified them using the taxonomy of web security vulner-
abilities [65] and their exploitation impact [66]. We report the
proportion of vulnerabilities whose impact enables malicious
access to resources. For these vulnerabilities, we identified the
resources they expose and the API that the vulnerable code
uses to access the resource. We also compiled a list of APIs
that vulnerable libraries used to access each resource type.
Next, we used CodeQL [67] and the compiled list of APIs to
search for API calls that access the exposed resource in the
affected library. If no calls were found, a coarse least-privilege
policy that denies access to the specific resource type would
prevent an exploit. However, if API calls were found, a fine-
grained policy would be needed that only authorizes access to
legitimately needed resource objects.

2) RQ2: RQ2 estimates the proportion of dependencies that
access sensitive resources and would need policy authoriza-
tion. From a library perspective, we measured the proportion
of popular Maven Central libraries with direct access to OS
resources. From an application perspective, we measured the
proportion of dependencies in real applications that access OS
resources during runtime. The results provide an upper bound
and a common estimate of the number of dependencies that
would require explicit policies. High values would threaten the
feasibility of ZTA when applied to software dependencies.

For the upper bound, we obtained 23,569 Maven Central
libraries sorted by their number of dependents, from the
Ecosystems [62] database for our analysis. 388 libraries could

†This represents an 8% confidence interval at a 95% confidence level.

Table II: Vulnerability classes in Java third-party libraries. The table
shows the consequences of exploitation, the required access to the
operating system, and the count. We also cite Common Weakness
Enumerations (CWEs) associated with each vulnerability class.

Vuln. Class Consequence OS Re-
source

Perc

Deserialization [69] Remote Code Exec. Shell,
FS

21 18%

Access
Control [70]

Unauth. App Access N/A 21 18%

Resource
Exhaust. [71]

Denial of Service N/A 18 15%

Code Injection [72] Remote Code Exec. Shell 13 11%
Path Traversal [73] File Read/Write FS 12 10%
XSS, CSRF [74] Unauth. Web Access N/A 11 9%
XXE [75] Data Exfiltration FS, Net 5 4%
Command
Injec. [76]

Remote Code Exec. Shell 4 3%

Impl. flaw [77] Varies N/A 8 7%
Others Varies N/A 5 4%

Total - - 118 100%

not be cloned, and 18,495 failed to build due to missing de-
pendencies. Similar to RQ1, we used CodeQL [67] to analyze
the remaining 4,686 libraries, identify sensitive API calls, and
report the percentage of libraries that access each type of
resource. For the common estimate, we used the 2023 Da-
Capo benchmark suite for Java, consisting of 22 applications,
including a web server (Tomcat), web application framework
(Spring), IDE (Eclipse), database (Cassandra), and message
bus (Kafka), and workloads that imitate industry needs [68].
Four applications did not build or run and we could not get
the list of dependencies for nine applications. We analyzed
the dependencies of the remaining nine applications using our
CodeQL scheme. We instrumented the nine applications to
record the resources each dependency accessed, executed the
applications, and compared the resources that the dependencies
accessed at runtime with the resources that the dependencies
can access as indicated in their CodeQL results.

B. Results

1) RQ1: Will least-priv policies mitigate SSC vulns?:
Finding 1 (RQ1): 46% of Java SSC vulnerabilities can
compromise an operating system resource. 58% (of 46%)
can be mitigated using a coarse-grained least-privilege
policy. 42% require finer-grained least-privilege policies
that can control the resource objects they access.

Table II shows the different vulnerability classes in Java
third-party libraries and the operating system resources they
expose. Five vulnerability classes, comprising 46% of vulner-
abilities, provide access to the file system, network, and shell.
They enable a malicious actor to manipulate files, exfiltrate
data, and execute commands remotely. From a study of ma-
licious libraries, Ohm et al. [66] found that these objectives
represented 97% of the analyzed attackers’ goals.

Table III (second section) shows the number of vulnerabil-
ities that expose different resource types and the proportion

Table III: Operating system resources exposed by vulnerabilities.
RQ1 (Vulns) shows the vuln. count and indicates whether the vuln.
library can access the resource. RQ2 (Maven) first column shows the
proportion of 4387 analyzed Maven Central libraries that can access
these resources directly. RQ2 (Maven) second column (a/b) shows
the number of dependencies (out of 103) that can access a resource
(a) and that accessed the resource within a DaCapo application (b).

RQ1 (Vulns) RQ2 (Maven)

OS
Resource

Vuln
Count

No
Access

Access %
Total

Caps
usage

File read 7 1 6 33% 46/4
File write 11 1 10 28% 46/1
Network
connection

7 3 4 12% 6/0

Shell execu-
tion

36 27 9 9% 15/0

of vulnerable libraries that need access. Some vulnerabilities
expose multiple resources. In 27 of 36 cases (75%), the shell is
exposed when not needed. A coarse-grained policy can prevent
these accesses. In contrast, in the 25 instances where file I/O
or network access is exposed, the vulnerable component did
not need the respective resource in only 5 instances (20%). For
cases where the affected library needs the exposed resource,
a more fine-grained notion of privilege would be needed, e.g.,
permitting access to some files or remote hosts but not others.
These observations guide our policy definition in §IV-C2.

2) RQ2: How many deps. need explicit least-priv. policies?:
Finding 2 (RQ2): In our upper bound estimate, 33%, 12%,
and 9% of Maven Central libraries would require permis-
sions to directly access file, network, and shell resources,
respectively. However, only 4% of the 103 dependencies in
9 applications required explicit least-privilege policies.

Our library-focused result is shown in Table III (last two
columns). First, less than 35% of the popular third-party
libraries of the Maven Central ecosystem directly access any
particular resource. For example, while 36/55 vulnerabilities
(65%) provide access to the Shell, only 16% (9/55) of the
vulnerable libraries and 9% of popular Maven Central libraries
require Shell permissions.

From an application perspective, in the 9 studied applica-
tions (comprising 103 dependencies), while up to 46 depen-
dencies (45%) could access the file system, only 4 depen-
dencies and 1 dependency read or wrote to a file within the
application. Similarly, while 15 dependencies could execute
shell commands, none of the dependencies executed a shell
command while executed by the application.

C. Discussion

ZTA Effectiveness: Per Table II, 55/118 of SSC vulnerabilities
allow resource compromise and can be mitigated by a secure
access control system. Of these, 32 (58%) could be addressed
with a coarse-grained least-privilege policy based on resource
type access, while 23 (42%) require finer-grained policies
based on specific resource objects. Recall that existing SSC se-

curity defenses support only coarse-grained privileges (§II-C)
and thus are ineffective against 42% of SSC vulnerabilities.
ZTA Configuration Cost: To effectively apply ZTA, one must
specify policies for application dependencies (defaulting to no
trust). Hence, the configuration cost depends on the number
of dependencies that require policy specification. A high
configuration cost would make ZTA impracticable in this
context. Table III shows that most dependencies do not require
access to sensitive resources. When they might, the access is
typically not used by their dependents.
Study Limitations: We note two cases in which our CodeQL
measurement will fail. First, a resource might be accessed with
an API not covered by our queries, which we mitigated by
building queries based on real exploits. Second, a resource
might be accessed through indirection (e.g., callbacks or
Java reflection). This threat is a consequence of using static
analysis [20], [21], which we chose for its scalability.

IV. ZERO-TRUST DEPENDENCIES: CONCEPT AND DESIGN

This section introduces Zero-Trust Dependencies (ZTD)
as a security architecture that mitigates SSC vulnerabilities.
We outline the threat model in §IV-A, define Zero-Trust
Dependencies in §IV-B, and discuss design considerations for
different ZTDSYS components (§IV-C – §IV-F).

A. System and Threat Model

System Model: An application depends on a vulnerable third-
party library that can access system resources using untrusted
(i.e., user-controlled) application data (shown in §III). The
resource access operation can be initiated by the vulnerable
dependency but executed directly (using function calls or
callbacks) or asynchronously (in independent or child threads)
by other dependencies or the application itself [27].
Threat Model: We include some threats and exclude others.
• In-scope: The attacker controls either the source code of

the vulnerable dependencies or the data that the application
passes to the vulnerable dependency. Hence, they can com-
promise the confidentiality and integrity of the host system
by exploiting the vulnerabilities in the dependency.

• Out-of-scope: We do not consider threats from the SSC vul-
nerabilities that cause denial-of-service or unauthorized ap-
plication access shown in Table II. Denial-of-service attacks
can compromise the application’s availability but they can be
easily detected by monitoring the application [78]. Sensitive
application functions should require additional authorization
and should not be accessible from code injection attacks.

This threat model is stronger than the import-restriction and
debloating-based models (§II-C) as it also prevents exploits
that only control data passed into the dependency.

B. The Zero-Trust Dependencies Concept

NIST’s Zero-Trust Architecture protects resources within a
network (§II-B). In this paper, we define resources [7] in the
software application context as data and computing services
provided by the operating system (OS) that an application can
operate on. Data services include the file and network system,

which enable access to confidential information that the OS
or its applications produce or use. Computing services include
the shell execution system that executes shell commands in
the OS. Operations refer to Read, Write, and Execute (RWX)
operations that can be performed on these resources.

To mitigate the use of SSC vulnerabilities to compromise
system resources, we introduce Zero-Trust Dependencies as an
adaptation of the NIST Zero-Trust Architecture (§II-B) to the
context of software applications.

Zero-Trust Dependencies is a software engineering
paradigm that grants no implicit trust to dependencies in an
application. It requires that dependencies possess explicit
authorization to create or operate on resources within the
application’s operating system.

Zero-Trust Dependencies involves three principles:
1) ZTD-P1: Secure Access: The access of dependencies to

resources should be authorized using the configured access
policies and the application’s execution context.

2) ZTD-P2: Least Privileges Enforcement: The access poli-
cies should reflect the least privilege set that dependencies
require to operate within the application.

3) ZTD-P3: Continous Monitoring: The software engineers
should be able to continuously monitor the resource access
of dependencies and use the insights gained to improve
threat intelligence and policy specification.

The ZTD paradigm’s security guarantee is: an application’s
dependencies cannot compromise the Confidentiality or In-
tegrity [79] of the operating system’s resources. Consequently,
ZTD reduces the risks that applications face from using third-
party libraries.

Dependency-level security defenses in §II-C do not enforce
the three ZTD principles in an application. Hence, we also
introduce the ZTD System (or ZTDSYS for short).

A ZTD System is the set of access control policy designs,
algorithms, and tools that enable software engineers to
apply the ZTD paradigm in their applications.

C. ZTD Policy Design

Zero-Trust Dependencies require policies that specify the
least privileges of dependencies. We propose:

1) ZTD Permission Model: The ZTD permission model is
designed to protect resources, within the operating system,
that vulnerability exploitation may expose. We use the access
matrix terminology from Sandhu et al. [80] to describe the
ZTD permission model. Permissions are given to dependencies
to perform operations on resource objects. Table IV shows
the three resource types supported and the operations that
can be performed. We focus on high-risk resource types
to simplify policy files and reduce permission verification
frequency. These resource types are high-risk because they
enable code execution, data exfiltration, and file manipulation
attacks, i.e., the major targets of supply chain attacks [66].

1 # Coarse-grained Policy
2 {
3 "com.app.bar": {
4 "fs.read": true,
5 "fs.read.denied": ["/tmp","/sensitive"],
6 ...
7 }
8

9 # Fine-grained Policy
10 {
11 "com.foo.baz": {
12 "fs.write": true,
13 "fs.write.allowed": ["app/logs"],
14 "runtime.exec": true,
15 "runtime.exec.transitive": ["whoami"]
16 },
17 ...
18 }

Listing 2: Policy Specification file. It supports coarse-grained (e.g.,
‘fs.read’) and fine-grained (e.g., ‘fs.read.allowed’) permissions.

Table IV: Resource types supported by the ZTD permission model.

Resource Type Operation Resource
Objects

File System Read, write Files
Network System Connect Network URLs
Shell System execution Shell commands

2) Permission Specification Granularity: Similar to the
Java Security Manager’s permission design [81], ZTDSYS al-
lows specifying coarse and fine-grained permissions. Listing 2
shows samples of a policy file.

Coarse-grained Permissions authorize a dependency to ac-
cess any object of the specified resource type. For example, a
coarse file read permission (fs.read) in Listing 2 allows the
com.app.bar dependency to read any file in the OS, except
files specified in fs.read.denied.

Fine-grained Permissions authorize a dependency to access
explicitly authorized resources. ZTDSYS provides direct and
transitive permissions that specify if an object can be accessed
directly or through another dependency. For example, Listing 2
grants the com.foo.baz dependency the permission to write
files, but only allows writing to those in fs.write.allowed.
The dependency is also granted the transitive runtime ex-
ecution permission, so it can transitively execute com-
mands specified in runtime.exec.transitive. Hence,
while com.foo.baz cannot execute the whomai command
directly, it can use another dependency that has direct permis-
sion to execute the command.

D. ZTD-P1: Secure and Context-Sensitive Access Control

The System Model in §IV-A shows that multiple depen-
dencies in an application can interact to perform a given
task, using direct or asynchronous calls. ZTDSYS relies on a
context-sensitive access control system that considers this set
of interacting dependencies when making access decisions and
prevents malicious dependencies from leveraging permissions
granted to other dependencies. This section and Listing 3
shows how ZTDSYS handles components that interact directly
and asynchronously.

1) Handling Direct Dependency Interactions: A depen-
dency can call functions from another dependency to access
operating system resources. These dependencies will be con-
tained in the executing thread’s call stack. Hence, ZTDSYS
grants access to a resource if all dependencies on the call stack
have the necessary direct or transitive permissions to access the
resource (Listing 3 lines 4-5, 20-28). This approach ensures
that no dependency has permission to access any resource on
its own and prevents malicious dependencies from exploiting
privileged dependencies to access unauthorized resources.

2) Handling Indirect Dependency Interactions: In multi-
threaded applications, a dependency can delegate a resource
access operation to another dependency or the application
(delegates). In a simpler case, the delegate may create a child
thread to access the resource [27]. Then, the call stack will not
contain the dependency that initiated the operation. ZTDSYS
handles this interthread delegation scenario by using the per-
missions of dependencies in the parent and child thread’s call
stack to authorize access (Listing 3 lines 8-17). When a child
thread is created, its parent’s dependency policies are saved.
The saved policies are retrieved and verified whenever the
child thread accesses any resource. As reported in §V-B, this
design does not handle more complex delegations involving
two independent threads or processes.

3) Enforcing ZTD Policies: When access to a resource
is denied, ZTDSYS provides two enforcement options that
balance the reliability needs of an application against the risk
appetite of the engineering team:
a) Fatal Enforcement mode: This option raises an exception to

block the unauthorized action. Software engineers working
on security-sensitive applications with low-risk tolerance
may prefer this mode. They can implement exception-
handling routines to prevent disruption to their applications.

b) Non-fatal Enforcement mode: This option does not interfere
with the application. Instead, ZTDSYS sends an unautho-
rized access alert to the application maintainers, who will
investigate the incident and begin any necessary remedial
actions. Software engineers maintaining applications with
high availability needs or in low security-sensitivity envi-
ronments may prefer this mode.

E. ZTD-P2: Discovery of Least Privileges

The huge number of dependencies in modern applications
makes it infeasible to manually specify the least privilege
policies for an application’s dependencies. ZTDSYS infers the
dependencies’ least privileges from their observed execution
behavior. This approach is motivated by findings from §III that
vulnerabilities commonly expose resources that are not needed
by the vulnerable dependencies during legitimate executions.
Listing 4 shows the algorithm employed by ZTDSYS for
discovering and generating the least privilege policies for
an application’s dependencies. ZTDSYS maintains a policy
object for each dependency in the application. At runtime,
it intercepts invocations of sensitive APIs that can access
an operating system resource. It retrieves the classes and
dependencies in the call stack and updates the policy of each

1 # In: resource type, specific item, and operation
2 # Out: True if access is approved, else False
3 def authorizeAccess(resType, resItem, resOp):
4 callStackClasses = getClassesFromCallStack()
5 depsPolicies = getPoliciesForDeps(callStackClasses)
6

7 ## This part handles thread-based delegation
8 if resType == "thread": # Child thread is created
9 # Propagate parent's policy to child thread

10 saveThreadParentPolicies(resItem, depsPolicies)
11 return True
12

13 ## For access from child threads,
14 ## we check its contextPolicy and that of its parent
15 parentContextPolicy = getParentPoliciesForThread()
16 if parentContextPolicy != null:
17 depsPolicies.extend(parentContextPolicy)
18

19 ## Having obtained the appropriate policy, check it
20 for policy in depsPolicies:
21 if policy.checkAccess(resType, resItem, resOp):
22 continue
23

24 #Policy does not grant access
25 if fatal_enforcement_mode:
26 raiseException()
27 else
28 sendAlert()

Listing 3: Context-sensitive permission verification and permission
inheritance. A dependency without defined permissions is authorized
if its caller is authorized. An operation is authorized if all dependen-
cies on the call stack are authorized.

1 # Function called when a resource access is requested
2 # In: resource type, specific item, and operation
3 def onPermissionRequested(resType, resOp, resItem):
4

5 # We get the classes in the call stack
6 classes = getClassesFromCallStack()
7

8 # For each class, we get its parent dependency
9 depPolicies = getPoliciesForDeps(classes)

10 # The first dependency is the direct caller.
11 depPolicies[0].addCoarsePerm(resType, resOp)
12 depPolicies[0].addFinePerm(resType, resOp, resItem)
13

14 # We assign transitive permissions to other deps
15 for (i = 1; i < depPolicies.length(); i++) {
16 depPolicies[i].addFinePerm(resType, resOp, resItem)
17 }

Listing 4: Pseudocode for discovering and generating the least
privilege policy from the observed execution behavior.

dependency with the necessary permission and the name of the
specific resource object that is being accessed. At intervals, it
writes the dependencies’ policies to a policy specification file.

We also considered inferring a dependency’s least privi-
leges by analyzing the library’s source code and identifying
invocations of function calls that access different resources. A
similar approach was applied by the dependency-level security
defenses [20]. However, this approach does not enable fine-
grained policy generation for dependencies as it is difficult
to statically determine the specific resource objects that a
dependency may dynamically access. Furthermore, the use of
indirection in many languages (e.g., C/C++ function pointers,
Java reflection) will lead to an imprecise identification of the
sensitive APIs that a dependency can access.

Table V: Java classes and instrumented methods that provide operat-
ing system resource access.

Operation Class Instrumented
Method

File Read FileInputStream <Constructor>
File Write FileOutputStream <Constructor>
Network Connect Socket connect()
Runtime Execu-
tion

ProcessBuilder start()

F. ZTD-P3: Risk Awareness through Continuous Monitoring

As noted in §IV-B, ZTD requires engineers to continuously
monitor their dependencies’ resource access. ZTDSYS supports
continuous monitoring using the approaches for least privilege
discovery and policy enforcement given above.

When run throughout the application’s lifetime, the least
privilege discovery framework continuously informs software
engineers of all resources their dependencies accessed. This
improves engineers’ risk awareness as they can audit any
dependency that accessed a sensitive resource to ensure mali-
cious actors cannot hijack such access.

In addition, when non-fatal enforcement mode is enabled,
ZTD informs software engineers of any unexpected resource
access by a dependency, facilitating an investigation. Further
investigations that show the access was benign and necessary
can lead to improvements of the provided policy.

V. ZTDJAVA : A ZTDSYS IMPL. FOR JAVA APPLICATIONS

Fig. 2: The ZTDSYS design has five components. The application
transformer instruments the application. The runtime monitor tracks
dependencies’ access to resources. The policy generator generates the
least privilege policies for dependencies. The policy context loads the
generated policies. The policy enforcer authorizes access.

We implemented a prototype of ZTDSYS for Java applica-
tions: ZTDJAVA. Java applications comprise classes containing
the application’s business logic, classes from dependencies,
and core classes provided by the Java Development Kit
(JDK). The JDK core classes allow the application and its
dependencies to access operating system resources and use
other features provided by the language. Table V shows the
core classes for accessing the file, network, and shell system.

Mapping Dependency Policies to Java Classes at Runtime:
In Java applications, the classes in the call stack do not
indicate their parent dependency. However, ZTDSYS requires
that the policies specified for dependencies apply to all
classes within the dependency. Hence, we need to map the
classes in the call stack to the specified dependency policy.
ZTDJAVA uses the heuristic that Java class names are formed
from the directory tree structure containing the class. Classes
in the same dependency share a common root directory path
and their names share a common prefix representing their
shared directory path. We refer to this common prefix as
the dependency’s namespace, as it contains all classes in
the dependency. For dependencies from the Maven Central
registry, this common prefix is usually obtained by combining
the unique Group ID and Artifact ID of the library in the
registry. Hence, the com.app.bar policy in Listing 2 will
apply to all classes with names beginning with com.app.bar.

A. Implementation Details of ZTDJAVA’s Components

ZTDJAVA is implemented in 2,284 lines of Java code. As
shown in Figure 2, ZTDJAVA comprises five components. We
discuss the implementation of each component below.

1) Application Transformer (AT) ➀: The Application trans-
former modifies the bytecodes of an application at runtime. It
is supplied as a command line argument for the java command
used to execute the application. It takes in a list of classes and
methods to modify. It uses the Java Instrumentation API [82]
to intercept the specified target classes as they are loaded
into the Java Virtual Machine and uses the ASM bytecode
modification library [83] to insert a direct call to the runtime
monitor at the start of the specified method. By default,
the AT instruments the methods in Table V, but it can be
configured to transform fewer or more methods, depending
on the application’s security needs.

2) Runtime Monitor ➁: The runtime monitor is called
whenever the application or a dependency attempts to access a
protected resource using an instrumented method. Depending
on ZTDJAVA’s configuration, the runtime monitor invokes the
policy generator and/or the policy enforcer.

3) Policy Generator ➂: The policy generator generates a
least-privilege policy for each dependency using the algorithm
in Listing 4. When a resource is accessed, it adds the required
permission to the policy objects of the dependencies on
the call stack. The policy objects are written to the least-
privilege policy file at specified intervals or during application
shutdown. In addition, the generated policy file also informs
software engineers of the resources their dependencies access
and the potential risks they pose.

4) Policy Context ➃: The policy context stores the specified
policies for each dependency. It is implemented using a
Patricia tree [84], where the nodes contain the dot-separated
components of the dependency name, and the policies are
contained in the leaf nodes. As classes do not contain unique
identifiers of their parent dependencies, the context store is
designed to get the policy of a class’ parent dependency
using only the class name. Hence, the policy for classes from

the com.foo.baz dependency can be obtained by using the
first three dot-separated components of their class name to
transverse the com, foo, and baz nodes in the tree. When the
application is started, ZTDJAVA creates the policy context from
the provided policy file. At runtime, the policy enforcer uses
the context to retrieve the policies that should be applied to
each class on the call stack.

5) Policy Enforcer ➄: The policy enforcer uses the context-
based authorization algorithm in Listing 3 to validate and
authorize access to OS resources. First, we get the set of
dependencies for the classes on the call stack, retrieve the
policies for these dependencies, and verify that all policies
have permission to access the resource.

B. Limitations of ZTDJAVA

• Asynchronous delegation: ZTDSYS’s handling of indirect
dependency interactions (§IV-D) does not cover delega-
tions between independent threads or processes created by
different dependencies. This can occur if a dependency
sends user-controlled data to a different thread where the
data will influence resource access. A taint-tracking-based
technique can associate permissions with communications
between threads and processes, which will incur high run-
time costs [85]. Alternatively, the permission model in ZTD
(§IV-C1) could be expanded to recognize threads and pro-
cesses as resources that require explicit access permissions.

• Use of Native Execution: An attacker can use native libraries
to bypass ZTD’s policy authorization. Our application trans-
former could protect the API that allows the use of native
libraries (e.g. System.loadLibrary() in Java). Alternative
designs execute native libraries in sandboxes [24], [26] but
this introduces significant performance overhead.

• False positives from incomplete generated policies: We
generate least privilege policies for each dependency based
on their observed execution behaviors, similar to sandbox
mining techniques [86]–[89]. These policies will block any
unexplored behaviors. To address this, ZTDSYS provides a
non-fatal enforcement mode that alerts engineers rather than
disrupting the application.

• Namespace Pollution: While rare, multiple dependencies
can share the same namespace in a Java application. A
malicious actor can create a dependency whose class names
share the same namespace as another dependency to inherit
the legitimate dependency’s privileges. However, enforcing
fine-grained policies will limit the attacker to only resources
that the legitimate dependency can access.

VI. ZTDJAVA : EVALUATION

This section evaluates ZTDJAVA’s effectiveness, runtime
costs, and policy configuration costs with the following ques-
tions.
RQ1 Effectiveness - Does ZTDJAVA prevent SSC vulnera-

bility exploits that access operating system resources?
RQ2 Performance cost - What is the performance cost of

ZTDJAVA on realistic applications?

RQ3 Configuration Effort - How much effort is required to
audit policies generated for realistic applications?

A. Setup
1) Vulnerability Selection: We use the vulnerabilities from

§III-A. We selected three vulnerabilities from each vulnerabil-
ity class (Table II), prioritizing vulnerabilities with a publicly
available exploit proof of concept (POC).

2) Application Selection: We used the DaCapo benchmark
applications from §III-A. To obtain least-privilege policies for
each application’s dependencies, we used ZTDJAVA’s policy
generator and the DaCapo benchmark suite’s test cases. These
tests ran under ZTDJAVA without issue.

3) Baseline Selection: We use the Java Security Manager
(JSM) [18] as a performance evaluation baseline as it shares
similar requirements with ZTDJAVA: authenticating access to
OS resources for Java applications. We could not quantita-
tively compare to extant dependency-level security defenses
(Table I), as none target the Java ecosystem.

B. Methodology
1) RQ1: Defense against exploits leveraging OS Resources:

To evaluate RQ1, we took two steps. First, we tested
ZTDJAVA’s ability to mitigate SSC vulnerabilities. For each
vulnerability, we created a sample application that depended
on the vulnerable library and could be exploited using the
available POC. We ran each application with ZTDJAVA to check
if the exploits were blocked. Our results are in Table VI.

Secondly, we assessed whether the least-privilege policy
generated by ZTDJAVA could prevent exploits in real ap-
plications. We injected 9 vulnerabilities into 4 applications:
Biojava, Fop, Graphchi, and Zxing. We selected applications
built with Maven so that we could easily add vulnerable
libraries as dependencies. We could not exploit 2 vulnera-
bilities within BioJava because the exploits required Java 8
and Biojava required a minimum of Java 11 to run. We used
ZTDJAVA and the provided workload to generate least-privilege
policies for each application and evaluated the effectiveness
of the generated policies in blocking exploits of the injected
vulnerabilities. While we injected only nine vulnerabilities in
this step, we expect the generated policies to also prevent
exploits of remaining vulnerabilities as the vulnerabilities
access resources not allowed by the policies. In addition,
unlike previous security defenses [20], [21] that are only
evaluated on vulnerabilities recreated in simple applications,
we demonstrated ZTDJAVA’s ability to generate and enforce
policies for real applications.

We note that our evaluation uses only vulnerabilities ana-
lyzed in §III and, therefore, the result may not generalize to
new vulnerabilities. However, the design of ZTDJAVA is based
on the general ZTA framework. This should help mitigate all
vulnerabilities covered by the threat model in §IV-A.

2) RQ2: ZTDJAVA’s Performance Impact: First, we mea-
sured the cost of each instrumented operation with and without
ZTDJAVA’s instrumentation. We used the Java Microbench-
marking Harness (JMH) library [90] maintained by OpenJDK
to avoid microbenchmarking pitfalls [91].

Table VI: ZTDJAVA’s performance in preventing host-system-
compromising exploits. It successfully blocks selected exploits. We
injected 7 vulns. in 4 applications and 2 vulnerabilities in only 3
applications. Their exploits were blocked. A ‘–’ means we did not
inject this vulnerability.

CVE ID Vuln. class Impact S. Apps D. Apps

CVE-2020-9547 Des. Code Ex. ✓ -
CVE-2020-8441 Des. Code Ex. ✓ 3/3
CVE-2022-36944 Des. File Man. ✓ -
CVE-2021-44228 Code Inj. Code Ex. ✓ 3/3
CVE-2022-33980 Code Inj. Code Ex. ✓ 4/4
CVE-2022-22963 Code Inj. Code Ex. ✓ -
CVE-2023-39021 Comm. Inj. Code Ex. ✓ 4/4
CVE-2023-39020 Comm. Inj. Code Ex. ✓ 4/4
CVE-2022-25914 Comm. Inj. Code Ex. ✓ 4/4
CVE-2022-0839 XXE Data Exf. ✓ 4/4
CVE-2021-23463 XXE Data Exf. ✓ -
CVE-2019-10172 XXE Data Exf. ✓ 4/4
CVE-2022-4244 Path Trav. File Man. ✓ 4/4
CVE-2020-17518 Path Trav. File Man. ✓ -
CVE-2020-17519 Path Trav. File Exf. ✓ -

Second, we measured performance while increasing the
number of dependencies (expected: constant) and the number
of classes from different dependencies in the call stack during
a method’s invocation (expected: linear).

Third, we profiled the applications. We measured the ex-
ecution time of each application without sandboxing, with
ZTDJAVA (configured in four modes), and with JSM. We used
the converge feature of the DaCapo benchmark harness †.

3) RQ3: ZTDJAVA’s Policy Configuration Effort: We mea-
sured the effort to audit the least-privilege policies generated
by ZTDJAVA for DaCapo benchmark applications. As default
policies are automatically generated, engineers should not need
to master a new policy language. Therefore, the configuration
effort will be spent mainly to audit and refine the generated
policies.

To the best of our knowledge, there is no existing metric for
configuration effort in this context. We therefore estimate that
the configuration effort depends on two factors: (1) the number
of dependencies for which ZTDJAVA generated a non-empty
policy, and (2) the number of permissions provided in each
such policy. The first metric captures the number of policies
that engineers would need to study. The engineer may also
need to assess if each provided permission is valid, so the
second metric captures the level of analysis that they must
perform for each dependency. For each application, we report
the number of dependency policies generated and the average
number of permissions per policy.

C. Results

1) RQ1: Defense against exploits leveraging OS Resources:
Table VI shows details of the vulnerabilities we recreated. As
shown, ZTDJAVA blocked the exploits of vulnerabilities in the
sample applications, When applied to real applications, we
find that the least privilege policies of all 4 applications were
sufficient to prevent the 9 vulnerability exploits.

†An application is executed until three executions have times within 3%,
then the next iteration’s time is kept. We repeated the average of 3 trials.

Table VII: Microbenchmark of security-sensitive operations. Uncer-
tainty is reported after the measurements converge.

Operation Vanilla (µs) ZTDJAVA (µs)

File Read 7.96± 0.27 23.62± 0.20 (196.7%)
File Write 33.78± 1.73 33.23± 0.56 (-1.6%)
Socket Connect 71.23± 2.56 72.19± 2.34 (1.3%)
Shell Execution 320.69± 27.9 345.70± 3.98 (7.8%)

Table VIII: Execution time overheads and ZTDJAVA configuration
effort on the DaCapo applications. The table shows dependency and
authorization call counts, the overhead of ZTDJAVA and JSM, and
the configuration effort for each app (x/y means x dependencies
need policies and each policy provides an average of y permissions).
‘–’: data unavailable because (column 2) application is not built with
Maven/Gradle, or (column 6) JSM could not execute.

App
Name

Deps
count

Auth
calls

Vanilla ZTDJAVA JSM Config
Effort

Avrora 3 6 10,036 0.52% 0.18% 2/2
Batik 24 16 1,605 0.83% – 3/2.7
Biojava 34 6 10,589 -0.56% -0.75% 7/2
Eclipse – 23k 16,464 2.91% 201.04% 9/3
Fop 30 94 734 0.23% 28.60% 8/2.5
Graphchi 40 97 5,245 -3.18% -0.19% 3/2
H2 – 10 3,599 0.60% -0.27% 2/2
Luindex – 11 5,933 -0.36% 14.22% 4/2
Lusearch – 6k 3,534 -0.48% -0.50% 4/2
PMD 47 12 1,953 -1.02% 0.96% 3/2
Spring 111 – 5,800 -1.17% – 17/1.6
Tomcat – 1k 4,229 0.50% 10.99% 19/2.3
Tradebeans – 42 23,401 0.07% – 13/2.9
Tradesoap – 37 13,129 0.10% – 13/3
Xalan – 9k 978 -2.04% -0.58% 5/2
Zxing 5 2.5k 1,290 2.53% -0.96% 3/1.7

Medians – – – -0.03% 21.06% 5/2

Fig. 3: Microbenchmarking results for the policy authorization oper-
ation, varying the number of dependencies in the application and the
call stack sizes. As predicted, the execution time is constant with the
dependency count and linear to the call stack lengths.

2) RQ2: ZTDJAVA Performance Impact: Table VII shows
the results of microbenchmarks for 4 operations: file read,
file write, socket connection, and shell execution. ZTDJAVA
introduces modest overhead in file write, socket, and shell
operations. For scaling, Figure 3 shows that ZTDJAVA’s per-
formance does not depend on the number of dependencies
and is marginally affected by call stack depth.

Table VIII shows the profile results on applications from the
DaCapo benchmark suite. ZTDJAVA introduces no noticeable
overhead on 7 applications, with <1% overhead on 13 of
the 16 applications. The JSM, despite operating at a higher
abstraction level, introduces >10% overhead on four of sixteen
applications, with ∼200% overhead in Eclipse.

We attribute ZTDJAVA’s minimal overhead, compared to
the JSM, to two factors. First, ZTDJAVA performs policy
authorization checks at the dependency granularity, i.e., once
per dependency in the call stack (Listing 3). In contrast,
the JSM checks permissions at the class granularity in the
call stack. Second, ZTDJAVA performs less frequent policy
authorization checks. The default implementation enforces
only 4 permissions while the JSM enforces 28 permissions
and protects 100+ methods [81].

3) RQ3: ZTDJAVA’s Configuration Effort: The last column
of Table VIII shows the number of dependency policies
generated for each application and the average number of
permissions provided in each policy. 9 of the 16 applications
have less than 5 dependencies that require policy specification.
Policies provide only 1-3 permissions to the dependency. All
policies were generated by ZTDJAVA without manual effort and
executed on applications without failure.

Note that the count of policies and permissions in Table VIII
includes both direct and transitive permissions. Hence, com-
pared to the data in Table VIII, only fewer dependencies
directly accessed any operating system resources.

VII. DISCUSSION

This section discusses ZTDJAVA’s application to software
applications (§VII-A) and other future directions (§VII-B).

A. Applying ZTDJAVA to Software Applications

1) Potential Usage Scenarios of ZTDJAVA: ZTD aims to
protect software applications from SSC vulnerabilities. We
foresee three potential usage scenarios for ZTDSYS based on
the risk tolerance and reliability needs of an application.
Proactive Security: Applications run in fatal enforcement
mode (§IV-D3). The engineering team observes dependency
resource access, generates policies, and enforces them to block
abnormal resource access. This mode provides high security,
but enforcing incomplete policies can lead to false positives
and disrupt the application. This mode would have prevented
the Equifax breach (CVE-2023-50164) [6] and attacks due to
the Log4J vulnerability (CVE-2021-44228) [56].
Reactive Security: Applications generate policies and enforce
them nonfatally (§IV-D3). This alerts engineers to unautho-
rized access without disrupting the application. This mode
would have detected the Equifax breach earlier, preventing the
reported 76-day dwell time [92] and limited its impact.
Emergency Security: Applications have policy discovery en-
abled (§IV-E) but no enforcement. When new vulnerabilities
are reported in a dependency, the policies discovered for that
dependency can be modified and enforced to mitigate the
vulnerability by blocking access to any exposed resource. This

mode can act as emergency first-aid and would have prevented
software engineers from shutting down applications after the
discovery of CVE-2021-44228 [93].

2) Test cases for generating least-privilege policies: In the
usage scenarios described, the engineering team responsible
for the application is tasked with selecting the test cases for
policy generation. They can use available workloads for end-
to-end tests or use fuzzing to generate new high-coverage test
cases [94], [95]. Alternatively, they can run their application in
ZTDSYS’s policy discovery mode until they feel confident that
the necessary functionalities have been exercised. This process
is performed once for the entire application and needs only to
be repeated when new functionalities or dependencies are in-
troduced. Furthermore, discovered least-privilege policies are
unlikely to be affected by dependency version updates, as such
updates rarely introduce new permission requirements [20].
In the future, we intend to implement lightweight coverage
metrics that help engineers decide when sufficient behaviors
have been covered.

3) Barriers to ZTDJAVA Adoption: While ZTDJAVA addresses
SSC vulnerabilities, we foresee two barriers to adoption.
a) Engineers may fear that runtime modifications might in-

troduce errors [96]. ZTDJAVA mitigates this concern by
modifying only a few (4) classes. All are in JDK core.

b) False positives may occur if ZTDJAVA encounters legitimate
resource accesses that were not previously observed. We
mitigate this by adding the non-fatal enforcement mode
where any false positives will not disrupt the application. A
possible ZTDJAVA utility would be a code coverage metric
to assess if sufficient program behavior has been covered.

4) ZTDJAVA vs. the Java Security Manager (JSM): Both
ZTDJAVA and the (deprecated) JSM address Java application
vulnerabilities via resource access authorization. As noted
in §II-C, JSM had high runtime costs (up to 200%) as well as
high policy complexity: JSM protected 100+ operations with
28 different permission types [81]. Based on common SSC
vulnerabilities, ZTDJAVA protects 3 sensitive resources by de-
fault, allowing lower performance costs and policy complexity.
However, ZTDJAVA’s application transformer (§V) can also be
configured to protect a different set of resources according
to the security and performance needs of the application.
Furthermore, ZTDJAVA overcomes the usability flaws that led
to the lack of use of JSM and subsequent deprecation [51].
It features a flexible permission model (§IV-C) that allows
coarse-grained policies for easy-to-develop policies and fine-
grained policies for stronger security, easier programming with
automated policy discovery (§IV-E), and low performance cost
(§VI-C2). While ZTDJAVA is designed to address vulnerabili-
ties in an application’s dependencies, it can also be extended
to mitigate the application’s own vulnerabilities, serving as an
effective replacement for the deprecated JSM.

5) Design Choice: Protect Resources or Operations: In
line with ZTA, ZTDSYS protects functions that access re-
sources. This approach differs from JSM [18] and some
other dependency-level defenses [21], [26], which protect
functions performing sensitive operations. Protecting sensitive

operations provides finer control over dependencies’ behavior.
However, the size, complexity, and diversity of applications
and programming languages mean there are many ‘sensitive’
operations, each requiring a different permission. As seen with
JSM (§VII-A4), this leads to increased policy complexity and
runtime performance overhead. To provide a balance, ZTDSYS
offers a customizable application transformer for adding or
disabling permissions.

B. Future Directions
1) Improving the visibility of third-party library

capabilities: Recent supply chain vulnerabilities like
Log4J/Log4Shell [56] highlight the need for third-party
library engineers to communicate the functionalities and
resource usage of third-party libraries. This practice would
help application engineers assess their risks, and discourage
the provision of unnecessary OS resource capabilities to these
libraries. Initiatives like Software Bill of Materials [34] and
Open-source Insights [97] could make this task machine-
checkable if these approaches were extended to document
the capabilities of third-party libraries. ZTDJAVA’s policy
generation component can assist engineers in documenting
their libraries’ capabilities and permissions.

2) Application to Other Ecosystems and Programming
Langs: Supply chain attacks in the Java ecosystem exploited
accidental vulnerabilities [55], [98], unlike attacks in the
JavaScript and Python ecosystems which are often caused by
malicious vulnerabilities [66]. This emphasizes the need for
runtime defenses that protect apps from vulnerable dependen-
cies in addition to preventing the use of malicious libraries.

The Zero-Trust Dependencies concept is language-agnostic
and protects applications relying on third-party libraries (§IV).
ZTDJAVA instrument functions in a language’s core libraries
that interact with the operating system’s resources (§IV).
With minimal adjustments, the tool can be used with other
JVM-based languages such as Kotlin [99] and Groovy [100].
Application to other languages is future work.

VIII. CONCLUSION

Software supply chain vulnerabilities and attacks are in-
creasing. Using NIST’s Zero-Trust Architecture as a frame-
work, we show that existing security defenses are incomplete.
We propose, design, implement, and evaluate the Zero-Trust
Dependencies approach. Zero-Trust Dependencies places zero
implicit trust in third-party software libraries, and can mitigate
risks and protect operating system resources without impeding
the application’s normal behavior. We design a low-cost, low-
effort system, ZTDSYS, enabling Zero-Trust Dependencies’s
application to software. Our prototype for Java applications,
ZTDJAVA, effectively mitigates supply chain vulnerabilities
with minimal runtime cost and ease of configuration. In
summary, Zero-Trust Dependencies provides a robust defense
against risks from vulnerable dependencies.

DATA AVAILABILITY

Our artifact is at: https://doi.org/10.5281/zenodo.14436182.
It has vulnerability data, ZTDJAVA source, and experiments.

REFERENCES

[1] Ken Thompson. Reflections on trusting trust. Communications of the
ACM, 27(8):761–763, August 1984.

[2] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven
Van Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. You are what you include: Large-scale evaluation of
remote javascript inclusions. In ACM Conference on Computer and
Communications Security (CCS), 2012.

[3] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and
Michael Pradel. Small world with high risks: A study of security
threats in the npm ecosystem. In USENIX Security Symposium, 2019.

[4] Dapeng Yan, Yuqing Niu, Kui Liu, Zhe Liu, Zhiming Liu, and
Tegawendé F. Bissyandé. Estimating the attack surface from residual
vulnerabilities in open source software supply chain. In 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security
(QRS), pages 493–502. ISSN: 2693-9177.

[5] Sameed Ali, Prashant Anantharaman, and Sean W. Smith. Armor
Within: Defending Against Vulnerabilities in Third-Party Libraries. In
IEEE Security and Privacy Workshops (SPW), 2020.

[6] The equifax breach was entirely preventable | WIRED. https://www.
wired.com/story/equifax-breach-no-excuse/.

[7] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. Zero
Trust Architecture. Technical Report NIST Special Publication (SP)
800-207, National Institute of Standards and Technology, August 2020.

[8] What is Zero Trust? https://cloud.google.com/learn/what-is-zero-trust.
[9] What Is Zero Trust Architecture? | Microsoft Security.

https://www.microsoft.com/en-us/security/business/security-101/
what-is-zero-trust-architecture.

[10] What is Zero Trust? | IBM. https://www.ibm.com/topics/zero-trust.
[11] Daniel D’Silva and Dayanand D. Ambawade. Building A Zero Trust

Architecture Using Kubernetes. In 2021 6th International Conference
for Convergence in Technology (I2CT), pages 1–8, April 2021.

[12] Elisa Bertino. Zero Trust Architecture: Does It Help? IEEE Security
& Privacy, 19(05):95–96, September 2021.

[13] Pacharee Phiayura and Songpon Teerakanok. A Comprehensive
Framework for Migrating to Zero Trust Architecture. IEEE Access,
11:19487–19511, 2023. Conference Name: IEEE Access.

[14] Eduardo B. Fernandez and Andrei Brazhuk. A critical analysis of
Zero Trust Architecture (ZTA). Computer Standards & Interfaces,
89:103832, April 2024.

[15] SELinux Wiki. http://selinuxproject.org/page/Main Page.
[16] AppArmor. https://apparmor.net/.
[17] Docker: Accelerated Container Application Development, May 2022.

https://www.docker.com/.
[18] The Security Manager (The Java™ Tutorials > Essential Java Classes

> The Platform Environment). https://docs.oracle.com/javase/tutorial/
essential/environment/security.html.

[19] Willem De Groef, Fabio Massacci, and Frank Piessens. NodeSentry:
least-privilege library integration for server-side JavaScript. In Annual
Computer Security Applications Conference (ACSAC), December 2014.

[20] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner.
Containing Malicious Package Updates in npm with a Lightweight
Permission System. In IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 2021.

[21] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Kon-
stantinos Kallas, Ben Karel, André DeHon, and Michael Pradel.
Preventing Dynamic Library Compromise on Node.js via RWX-Based
Privilege Reduction. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2021.

[22] Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen,
Jiasi Shen, and Martin C. Rinard. Supply-Chain Vulnerability Elim-
ination via Active Learning and Regeneration. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2021.

[23] Pardis Pashakhanloo, Aravind Machiry, et al. PacJam: Securing Depen-
dencies Continuously via Package-Oriented Debloating. In ACM-Asia
Conf. on Computer and Communications Security (AsiaCCS), 2022.

[24] Mengtao Sun and Gang Tan. NativeGuard: protecting android applica-
tions from third-party native libraries. In ACM conference on Security
and privacy in wireless & mobile networks (WiSec), 2014.

[25] Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi,
and Stefano Paraboschi. Cage4Deno: A Fine-Grained Sandbox for
Deno Subprocesses. In ACM Asia Conference on Computer and
Communications Security (AsiaCCS), 2023.

[26] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, Andre
DeHon, and Jonathan M. Smith. BreakApp: Automated, Flexible
Application Compartmentalization. In Network and Distributed System
Security Symposium (NDSS). Internet Society, 2018.

[27] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Taesoo Kim, and Insik
Shin. FLEXDROID: Enforcing In-App Privilege Separation in An-
droid. In Proceedings 2016 Network and Distributed System Security
Symposium, San Diego, CA, 2016. Internet Society.

[28] Chinenye Okafor, Taylor R. Schorlemmer, Santiago Torres-Arias, and
James C. Davis. SoK: Analysis of Software Supply Chain Security
by Establishing Secure Design Properties. In ACM Workshop on
Software Supply Chain Offensive Research and Ecosystem Defenses.
ACM, 2022.

[29] The Linux Foundation. Supply chain levels for software artifacts(slsa):
Safeguarding artifact integrity across any software supply chain. https:
//slsa.dev/, 2021. Accessed: 2024-03-22.

[30] Ryan Naraine. Software supply chain weakness: Snyk
warns of “deliberate sabotage” of npm ecosystem. https:
//tinyurl.com/4p6x2dwc, March 2022. Accessed: 2024-03-22,
url: ”https://www.securityweek.com/software-supply-chain-weakness-
snyk-warns-deliberate-sabotage-npm-ecosystem/”.

[31] Jack Wallen. University of minnesota researchers tried to poison the
linux kernel. https://tinyurl.com/5ckrdpv6, April 2021. Accessed:
2024-03-22, url:”https://thenewstack.io/university-of-minnesota-
researchers-tried-to-poison-the-linux-kernel-for-a-research-project/”.

[32] Zhu Frank. Automatically assess and remediate the solarwinds
hack. https://tinyurl.com/4maapt9t, April 2021. Accessed: 2024-
03-22, url: ”https://jfrog.com/blog/automatically-assess-and-remediate-
the-solarwinds-hack/”.

[33] Solarwinds. Setting the New Standard in Secure Software Development
The SolarWinds Next-Generation Build System. Technical report,
solarwinds, December 2021.

[34] Software Bill of Materials (SBOM) | CISA. https://www.cisa.gov/
sbom.

[35] OSV - Open Source Vulnerabilities. https://osv.dev/.
[36] Zachary Newman, John Speed Meyers, and Santiago Torres-Arias.

Sigstore: Software Signing for Everybody. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2022.

[37] Santiago Torres-Arias, Hammad Afzali, Trishank Karthik Kuppusamy,
Reza Curtmola, and Justin Cappos. in-toto: Providing farm-to-table
guarantees for bits and bytes. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1393–1410, 2019.

[38] Badis Hammi and Sherali Zeadally. Software supply-chain security:
Issues and countermeasures. In Computer, volume 56, pages 54–66.

[39] Spring cloud function. https://docs.spring.io/spring-cloud-function/
docs/current/reference/html/spring-cloud-function.html.

[40] John Kindervag. Build Security Into Your Network’s DNA: The Zero
Trust Network Architecture. 2010.

[41] Naeem Firdous Syed, Syed W. Shah, Arash Shaghaghi, Adnan Anwar,
Zubair Baig, and Robin Doss. Zero Trust Architecture (ZTA): A
Comprehensive Survey. IEEE Access, 10:57143–57179, 2022.

[42] Keyvan Ramezanpour and Jithin Jagannath. Intelligent zero trust
architecture for 5G/6G networks: Principles, challenges, and the role
of machine learning in the context of O-RAN. Computer Networks,
217:109358, November 2022.

[43] Fabio Federici, Davide Martintoni, and Valerio Senni. A Zero-
Trust Architecture for Remote Access in Industrial IoT Infrastructures.
Electronics, 12(3):566, January 2023.

[44] Seccomp BPF (SECure COMPuting with filters) — The Linux Kernel
documentation.

[45] Nik Sultana, Henry Zhu, Ke Zhong, Zhilei Zheng, Ruijie Mao, Digvi-
jaysinh Chauhan, Stephen Carrasquillo, Junyong Zhao, Lei Shi, et al.
Towards Practical Application-level Support for Privilege Separation.
In Annual Computer Security Applications Conference (ACSAC), 2022.

[46] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge:
splitting applications into reduced-privilege compartments. In USENIX
Symposium on Networked Systems Design and Impl. (NSDI), 2008.

[47] Yongzheng Wu, Jun Sun, Yang Liu, and Jin Song Dong. Automatically
partition software into least privilege components using dynamic data
dependency analysis. In IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2013.

[48] Marc Ohm, Timo Pohl, and Felix Boes. You Can Run But You
Can’t Hide: Runtime Protection Against Malicious Package Updates
For Node.js, May 2023. arXiv:2305.19760 [cs].

https://www.wired.com/story/equifax-breach-no-excuse/
https://www.wired.com/story/equifax-breach-no-excuse/
https://cloud.google.com/learn/what-is-zero-trust
https://www.microsoft.com/en-us/security/business/security-101/what-is-zero-trust-architecture
https://www.microsoft.com/en-us/security/business/security-101/what-is-zero-trust-architecture
https://www.ibm.com/topics/zero-trust
http://selinuxproject.org/page/Main_Page
https://apparmor.net/
https://www.docker.com/
https://docs.oracle.com/javase/tutorial/essential/environment/security.html
https://docs.oracle.com/javase/tutorial/essential/environment/security.html
https://slsa.dev/
https://slsa.dev/
https://tinyurl.com/4p6x2dwc
https://tinyurl.com/4p6x2dwc
https://tinyurl.com/5ckrdpv6
https://tinyurl.com/4maapt9t
https://www.cisa.gov/sbom
https://www.cisa.gov/sbom
https://osv.dev/
https://docs.spring.io/spring-cloud-function/docs/current/reference/html/spring-cloud-function.html
https://docs.spring.io/spring-cloud-function/docs/current/reference/html/spring-cloud-function.html

[49] Z. Cliffe Schreuders, Tanya McGill, and Christian Payne. The state
of the art of application restrictions and sandboxes: A survey of
application-oriented access controls and their shortfalls. Computers
& Security, 32:219–241, February 2013.

[50] Michael Maass. A Theory and Tools for Applying Sandboxes Effec-
tively. PhD Dissertation. Carnegie Mellon University. 2016.

[51] Sean Mullan. JEP 411: Deprecate the Security Manager for Removal.
https://openjdk.org/jeps/411.

[52] P. Ladisa, H. Plate, M. Martinez, and O. Barais. SoK: Taxonomy
of Attacks on Open-Source Software Supply Chains. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 1509–1526, Los
Alamitos, CA, USA, May 2023. IEEE Computer Society.

[53] Github Language Stats. https://madnight.github.io/githut/#/pull
requests/2023/4.

[54] TIOBE Index. https://www.tiobe.com/tiobe-index/.
[55] Cybersecurity and Infrastructure Security Agency. Csrb report on log4j.

Technical report, Cybersecurity and Infrastructure Security Agency,
July 2022. Accessed: 2024-03-21.

[56] Menghan Xiao. Digging into the numbers: One year
after log4shell. https://www.scmagazine.com/feature/
digging-into-the-numbers-one-year-after-log4shell, December 2022.
Accessed: 2024-03-21.

[57] Amnon Even-Zohar. Eslint: Compromising the build
using supply chain attack. https://cycode.com/blog/
eslint-compromising-the-build-using-supply-chain-attack/, 2021.
Accessed: 2024-03-21.

[58] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. Empirical
analysis of security vulnerabilities in python packages. In 2021
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 446–457, 2021.

[59] Lyuye Zhang, Chengwei Liu, Sen Chen, Zhengzi Xu, Lingling Fan,
Lida Zhao, Yiran Zhang, and Yang Liu. Mitigating persistence of
open-source vulnerabilities in maven ecosystem, 2023.

[60] Berkay Kaplan and Jingyu Qian. A survey on common threats in npm
and pypi registries. In Gang Wang, Arridhana Ciptadi, and Ali Ah-
madzadeh, editors, Deployable Machine Learning for Security Defense,
pages 132–156, Cham, 2021. Springer International Publishing.

[61] Amir M. Mir, Mehdi Keshani, and Sebastian Proksch. On the effect
of transitivity and granularity on vulnerability propagation in the
maven ecosystem. In 2023 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 201–211, 2023.

[62] Open Data Releases | Ecosyste.ms: Packages. https://packages.
ecosyste.ms/open-data.

[63] Paschal C. Amusuo, Ricardo Andrés Calvo Méndez, Zhongwei Xu,
Aravind Machiry, and James C. Davis. Systematically Detecting Packet
Validation Vulnerabilities in Embedded Network Stacks. In IEEE/ACM
International Conference on Automated Software Engineering (ASE
2023), August 2023. arXiv:2308.10965 [cs].

[64] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and detecting real-world performance bugs. ACM
SIGPLAN Notices, 47(6):77–88, June 2012.

[65] Wafaa Al-Kahla, Ahmed S. Shatnawi, and Eyad Taqieddin. A Tax-
onomy of Web Security Vulnerabilities. In 2021 12th International
Conference on Information and Communication Systems (ICICS), pages
424–429, May 2021. ISSN: 2573-3346.

[66] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. Back-
stabber’s Knife Collection: A Review of Open Source Software Supply
Chain Attacks. In Clémentine Maurice, Leyla Bilge, Gianluca Stringh-
ini, and Nuno Neves, editors, Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 23–43, Cham, 2020. Springer
International Publishing.

[67] CodeQL. https://codeql.github.com/.
[68] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.

Khang, et al. The DaCapo benchmarks: java benchmarking devel-
opment and analysis. ACM SIGPLAN Notices, 41(10), 2006.

[69] CWE-502: Deserialization of Untrusted Data (4.14). https://cwe.mitre.
org/data/definitions/502.html.

[70] CWE-863: Incorrect Authorization (4.14). https://cwe.mitre.org/data/
definitions/863.html.

[71] CWE-770: Allocation of Resources Without Limits or Throttling
(4.14). https://cwe.mitre.org/data/definitions/770.html.

[72] CWE-94: Improper Control of Generation of Code (’Code Injection’)
(4.14). https://cwe.mitre.org/data/definitions/94.html.

[73] CWE-22: Improper Limitation of a Pathname to a Restricted Directory
(’Path Traversal’) (4.14). https://cwe.mitre.org/data/definitions/22.html.

[74] CWE-79: Improper Neutralization of Input During Web Page Gen-
eration (’Cross-site Scripting’) (4.14). https://cwe.mitre.org/data/
definitions/79.html.

[75] CWE-611: Improper Restriction of XML External Entity Reference
(4.14). https://cwe.mitre.org/data/definitions/611.html.

[76] CWE-78: Improper Neutralization of Special Elements used in an OS
Command (’OS Command Injection’) (4.14). https://cwe.mitre.org/
data/definitions/78.html.

[77] CWE-248: Uncaught Exception (4.14). https://cwe.mitre.org/data/
definitions/248.html.

[78] Hossein Zare, Mojgan Azadi, and Peter Olsen. Techniques for detecting
and preventing denial of service attacks (a systematic review approach).
In Shahram Latifi, editor, Information Technology - New Generations,
pages 151–157. Springer International Publishing.

[79] Spyridon Samonas and David Coss. The CIA strikes back: Redefin-
ing confidentiality, integrity and availability in security. Journal of
Information Systems Security, 10(3):21–45.

[80] R.S. Sandhu and P. Samarati. Access control: principle and practice.
IEEE Communications Magazine, 32(9):40–48, September 1994. Con-
ference Name: IEEE Communications Magazine.

[81] Oracle Corporation. Permissions in the java development kit,
2014. https://docs.oracle.com/javase/8/docs/technotes/guides/security/
permissions.html.

[82] java.lang.instrument (Java Platform SE 8). https://docs.oracle.com/
javase/8/docs/api/java/lang/instrument/package-summary.html.

[83] ASM. https://asm.ow2.io/.
[84] Patricia tree. https://xlinux.nist.gov/dads/HTML/patriciatree.html.
[85] Christopher Brant, Prakash Shrestha, Benjamin Mixon-Baca, Kejun

Chen, Said Varlioglu, Nelly Elsayed, Yier Jin, Jedidiah Crandall,
and Daniela Oliveira. Challenges and Opportunities for Practical
and Effective Dynamic Information Flow Tracking. ACM Computing
Surveys, 55(1):17:1–17:33, November 2021.

[86] Konrad Jamrozik, Philipp von Styp-Rekowsky, and Andreas Zeller.
Mining sandboxes. In International Conference on Software Engineer-
ing (ICSE), 2016.

[87] Zhiyuan Wan, David Lo, Xin Xia, Liang Cai, and Shanping Li. Mining
Sandboxes for Linux Containers. In IEEE International Conference on
Software Testing, Verification and Validation (ICST), 2017.

[88] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz.
Automating Seccomp Filter Generation for Linux Applications. In
Cloud Computing Security Workshop (CCSW), 2021.

[89] Matthew W Sanders and Chuan Yue. Mining least privilege attribute
based access control policies. In Annual Computer Security Applica-
tions Conference (ACSAC), 2019.

[90] OpenJDK: jmh. https://openjdk.org/projects/code-tools/jmh/.
[91] Diego Costa, Cor-Paul Bezemer, Philipp Leitner, and Artur Andrzejak.

What’s Wrong with My Benchmark Results? Studying Bad Practices in
JMH Benchmarks. IEEE Transactions on Software Engineering (TSE),
47(7), 2021.

[92] Equifax data breach FAQ. https://www.csoonline.com/article/567833.
[93] SAS response/recommendations for zero-day

log4j2 CVE-2021-44228 vulnerabilities. https://
communities.sas.com/t5/Administration-and-Deployment/
SAS-response-recommendations-for-zero-day-log4j2-CVE-2021-44228/
td-p/785489.

[94] Mitchell Olsthoorn, Dimitri Stallenberg, Arie van Deursen, and Anni-
bale Panichella. SynTest-solidity: automated test case generation and
fuzzing for smart contracts. In International Conference on Software
Engineering: Companion, pages 202–206. ACM.

[95] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. PM-
Fuzz: test case generation for persistent memory programs. In ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 487–502.

[96] Yuwei Liu, Yanhao Wang, Purui Su, Yuanping Yu, and Xiangkun Jia.
InstruGuard: Find and fix instrumentation errors for coverage-based
greybox fuzzing. In IEEE/ACM International Conference on Automated
Software Engineering (ASE).

[97] Open Source Insights. https://deps.dev/.
[98] Equifax confirms Apache Struts flaw it failed to patch was to blame

for data breach. https://tinyurl.com/mr38cya7.
[99] Kotlin programming language. https://kotlinlang.org/.

[100] The apache groovy programming language. https://groovy-lang.org/.

https://openjdk.org/jeps/411
https://madnight.github.io/githut/#/pull_requests/2023/4
https://madnight.github.io/githut/#/pull_requests/2023/4
https://www.tiobe.com/tiobe-index/
https://www.scmagazine.com/feature/digging-into-the-numbers-one-year-after-log4shell
https://www.scmagazine.com/feature/digging-into-the-numbers-one-year-after-log4shell
https://cycode.com/blog/eslint-compromising-the-build-using-supply-chain-attack/
https://cycode.com/blog/eslint-compromising-the-build-using-supply-chain-attack/
https://packages.ecosyste.ms/open-data
https://packages.ecosyste.ms/open-data
https://codeql.github.com/
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/248.html
https://cwe.mitre.org/data/definitions/248.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://asm.ow2.io/
https://xlinux.nist.gov/dads/HTML/patriciatree.html
https://openjdk.org/projects/code-tools/jmh/
https://www.csoonline.com/article/567833
https://communities.sas.com/t5/Administration-and-Deployment/SAS-response-recommendations-for-zero-day-log4j2-CVE-2021-44228/td-p/785489
https://communities.sas.com/t5/Administration-and-Deployment/SAS-response-recommendations-for-zero-day-log4j2-CVE-2021-44228/td-p/785489
https://communities.sas.com/t5/Administration-and-Deployment/SAS-response-recommendations-for-zero-day-log4j2-CVE-2021-44228/td-p/785489
https://communities.sas.com/t5/Administration-and-Deployment/SAS-response-recommendations-for-zero-day-log4j2-CVE-2021-44228/td-p/785489
https://deps.dev/
https://tinyurl.com/mr38cya7
https://kotlinlang.org/
https://groovy-lang.org/

	Introduction
	Background
	Software Supply Chains (SSC) and Vulnerabilities
	Zero-Trust Architecture as a Conceptual Framework
	Limitations of Existing Application Security Defenses

	Zero-Trust Architecture Feasibility Analysis
	Methodology
	RQ1
	RQ2

	Results
	RQ1: Will least-priv policies mitigate SSC vulns?
	RQ2: How many deps. need explicit least-priv. policies?

	Discussion

	Zero-Trust Dependencies: Concept and Design
	System and Threat Model
	The Zero-Trust Dependencies Concept
	ZTD Policy Design
	ZTD Permission Model
	Permission Specification Granularity

	ZTD-P1: Secure and Context-Sensitive Access Control
	Handling Direct Dependency Interactions
	Handling Indirect Dependency Interactions
	Enforcing ZTD Policies

	ZTD-P2: Discovery of Least Privileges
	ZTD-P3: Risk Awareness through Continuous Monitoring

	ZTDJAVA: A ZTDSYS Impl. for Java Applications
	Implementation Details of ZTDJAVA's Components
	Application Transformer (AT) blue➀
	Runtime Monitor blue➁
	Policy Generator blue➂
	Policy Context blue➃
	Policy Enforcer blue➄

	Limitations of ZTDJAVA

	ZTDJAVA: Evaluation
	Setup
	Vulnerability Selection
	Application Selection
	Baseline Selection

	Methodology
	RQ1: Defense against exploits leveraging OS Resources
	RQ2: ZTDJAVA's Performance Impact
	RQ3: ZTDJAVA's Policy Configuration Effort

	Results
	RQ1: Defense against exploits leveraging OS Resources
	RQ2: ZTDJAVA Performance Impact
	RQ3: ZTDJAVA's Configuration Effort

	Discussion
	Applying ZTDJAVA to Software Applications
	Potential Usage Scenarios of ZTDJAVA
	Test cases for generating least-privilege policies
	Barriers to ZTDJAVA Adoption
	ZTDJAVA vs. the Java Security Manager (JSM)
	Design Choice: Protect Resources or Operations

	Future Directions
	Improving the visibility of third-party library capabilities
	Application to Other Ecosystems and Programming Langs

	Conclusion
	References

