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Abstract—Unified Extensible Firmware Interface (UEFI) spec-
ification describes a platform-independent pre-boot interface
for an Operating System (OS). EDK-2 Vulnerabilities in UEFI
interface functions have severe consequences and can lead to
Bootkits and other persistent malware resilient to OS reinstalla-
tions. However, there exist no vulnerability detection techniques
for UEFI interfaces. We present FUZZUER, a feedback-guided
fuzzing technique for UEFI interfaces on EDK-2, an exemplary
and prevalently used UEFI implementation. We designed FIRNESS
that utilizes static analysis techniques to automatically generate
fuzzing harnesses for interface functions. We evaluated FUZZUER
on the latest version of EDK-2. Our comprehensive evaluation on
150 interface functions demonstrates that FUZZUER with FIR-
NESS is an effective testing technique of EDK-2’s UEFI interface
functions, greatly outperforming HBFA, an existing testing tool
with manually written harnesses. We found 20 new security
vulnerabilities, and most of these are already acknowledged by
the developers.

I. INTRODUCTION

Unified Extensible Firmware Interface (UEFI) [3] is a
specification that describes a standard interface between
the Operating System (OS) and the platform firmware, along
with the interface between the drivers of the platform firmware
itself. Specifically, the UEFI defines a set of interfaces and
structures available to the OS at boot time and runtime
(i.e., when the OS is completely booted and running). UEFI
enables platform independent OS booting, which allows
the OS to remain independent of the specifics and capabilities
of the underlying platform, provided the platform is using
the UEFI and not the legacy BIOS. Intel’s EDK-2 [46]
is the most widely known open-source implementation of
the UEFI. Most platform vendors use EDK-2 (e.g., ARM,
AMD, Intel, NVIDIA, Lenovo, Apple, Dell, Microsoft, etc.),
which is seen through either their public EDK-2 forks [6],
[31], [32] or through public disclosures [5], [36], [44].
Vulnerabilities in EDK-2 have severe consequences and can
lead to Bootkits [30] and other persistent malware resilient
to OS reinstallations.
Recent works [17], [29], [45] have shown the prevalence
of severe security vulnerabilities in EDK-2 components.
For instance, recently, Binarly found 24 severe security
vulnerabilities in image parsing components of EDK-2,
dubbed LogoFail [45]. The lack of exploitation mitigation

mechanisms (e.g., Address Space Layout Randomization
(ASLR) [15]) makes it easy to exploit these vulnerabilities.
We need effective techniques to detect vulnerabilities
in EDK-2. However, the complexity and the hardware-
dependent nature of EDK-2 makes it challenging. Specifically,
the modular and event-driven nature of EDK-2 makes it
challenging to apply traditional flow-based static vulnerability
detection techniques [27], [33]. Dynamic analysis, such as
Random Testing or Fuzzing [28], is an optimal choice.

Most of the relevant fuzzing work [35], [47], [49] focuses
on System Management Interrupt (SMI) handlers, which are
special purpose functions that run in System Management
Mode (SMM) mode [13] and are installed by EDK-2. SMI
handlers are used by the OS to interact with hardware compo-
nents through a layer of abstraction. Yang et al., [47] proposes
a technique to fuzz EDK-2 on a virtual platform. However, their
technique requires the need to use their fuzzing framework.
Furthermore, their tool is not open-source, which makes it
hard to assess its effectiveness. Recent works [20], [45] target
specific components of EDK-2, such as image parsing, and
focus on fuzzing them. However, such targeted fuzzing isn’t
feasible on a large scale and requires a significant engineering
effort. We aim to develop an automated coverage-guided
fuzzing technique for the EDK-2 implementation of UEFI com-
ponents, specifically interface functions and drivers. However,
the design, semantics, and bare-metal execution of the EDK-
2 possess several technical challenges (§ IV) for effective
fuzzing. Furthermore, the lack of OS abstractions and runtime
support pose engineering challenges in using sanitizers, such
as Address Sanitizer (ASAN) [37], which are essential for
effective vulnerability finding.

In this paper, we present FUZZUER a coverage-guided
fuzzing framework for UEFI interface functions in EDK-2.
We use a combination of reaching definition and value-set
analysis to identify the data type of parameters accepted by
these interface functions. We also identify generator functions
that enable us to generate well-formed and stateful objects
using fuzzer-generated data. Given an interface function, our
analyses will emit a source-level harness (using the types and
corresponding generator functions) to exercise the function.
Specifically, the harness will be compiled into an UEFI shell
application that exercises the target function with well-formed
arguments created from input (i.e., fuzzer-generated data). We
make engineering enhancements enabling ASAN instrumen-
tation and coverage feedback. Our evaluation of FUZZUER
shows that it can detect 66% of previously known vulnerabil-
ities and achieves an average of 50% coverage across various

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240400
www.ndss-symposium.org



interface functions. FUZZUER also found 20 new vulnerabili-
ties across 150 EDK-2 interface functions. Our ablation study
shows that our analysis techniques, in comparison with the
naive approach, improve code coverage by 30% and detect
twice the number of bugs. In summary, the following are our
contributions:

• We present FIRNESS, which combines static analysis
techniques with templates to generate source-level har-
nesses to test EDK-2s UEFI interface functions.

• We present FUZZUER, a coverage-guided fuzzing system
for EDK-2 interfaces using FIRNESS.

• We performed a comprehensive evaluation across 150
interface functions and found 20 new security vulnerabili-
ties. We also show that information generated by FIRNESS
greatly improves the coverage and bug-finding ability of
FUZZUER, outperforming HBFA [34], current state-of-
the-practice testing tool with manually written harnesses.

• We make our framework open-source at
https://github.com/BreakingBoot/FuzzUEr.git to enable
further research in testing UEFI interfaces.

II. BACKGROUND AND MOTIVATION

First, we present the necessary background (§ II-A) on
the UEFI components specifications, their usage, and inter-
actions. Next, we present the motivation for our work through
vulnerabilities study (§ II-B).

A. UEFI

The Unified Extensible Firmware Interface (UEFI) is a
complicated specification defining how components of modern
computer bootloaders interact with each other. The goal of
UEFI is to allow different OEMs to independently develop
drivers for their hardware that will work across many different
hardware configurations rather than developing a unique driver
for each system.

EDK-2 [46]: is Intel’s exemplary open-source implementation
of the UEFI framework. As mentioned in § I, most (rather all)
platform vendors’ UEFI frameworks are based on EDK-2. In
the rest of the paper, we use UEFI and EDK-2 synonymously;
all examples are from the official EDK-2 repository.

1) Phases: There are four main phases in UEFI, as shown
in Figure 1: Security (SEC), Pre-EFI Initialization (PEI),
Driver Execution Environment (DXE), and Boot Device Se-
lection (BDS). The SEC phase is responsible verifying the
digital signatures of the firmware to ensure a Secure Boot
Environment, along with initializing basic temporary hardware
components like a memory controller and a timer. The PEI
phase builds upon SEC by initializing more hardware and
loading PEI modules that are responsible for further hardware
setup. The DXE phase is the main phase of the boot process. It
(i.e., DXE Dispatcher) is responsible for loading the rest of the
drivers needed during the boot process, including permanent
drivers that will remain on the system even during runtime.
The BDS phase is the selection phase that will choose which
operating system to boot into. The DXE phase (our focus)
exposes various interfaces for BDS and OS bootloader to
interact with the UEFI environment.

2) DXE Interfaces: At a high level, interfaces exposed at
the DXE layer can be classified into services and protocols.
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Fig. 1: UEFI Background and FUZZUER components
Listing 1 Example demonstrating Accessing PxeBoot Pro-
tocol.

1 EFI_PXE_BASE_CODE_PROTOCOL *PxeBoot;
2 Status = gBS->LocateProtocol (
3 &gEfiPxeBaseCodeProtocolGuid,
4 NULL,
5 (VOID **)&PxeBoot
6 );
7 EFI_MTFTP6_PROTOCOL *Mtftp6Prot;
8 EFI_PXE_BASE_CODE_PACKET Packet;
9 // Generate Packet Data

10 Mtftp6Prot->GetInfo(..., (VOID **)&Packet);
11 // Set the packet
12 PxeBoot->SetPackets(...,&Packet);

a) Services: These are interfaces defined by the UEFI
standard and should be implemented in any UEFI-compatible
pre-boot environment. The services (i.e., a set of functions)
expose the necessary functionality to interact with the UEFI
environment, e.g., AllocatePages service can be used to
allocate pages of a particular type (similar to malloc). The Ap-
pendix A-A presents the details of DXE services.

b) Protocols: These interfaces allow vendors to eas-
ily customize existing UEFI components (e.g., services and
drivers) and expose new functionality. Each protocol has a
Globally Unique IDentifier (GUID) and associated interface (a
C struct with a set of function pointers). The Appendix A-C
shows an example of customizing device drivers using proto-
cols.

Registering Protocol: A protocol can be reg-
istered by using InstallProtocolInterface or
InstallMultipleProtocolInterfaces (recommended)
boot services. You need to provide a GUID and the pointer
to the interface structure.

Listing 7 (in Appendix) shows an example of registering
a protocol with gEfiPxeBaseCodeProtocolGuid (indicated by
1) containing the GUID and gPxeBcProtocolTemplate as the
interface, indicated by 2, is a structure containing a sequence
of function pointers. For instance, as indicated by 3, the
pointer for the function EfiPxeBcUdpRead is used as a member
of the interface.

Accessing Protocol: Listing 1 shows an example
of accessing a protocol. First, using the GUID
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(gEfiPxeBaseCodeProtocolGuid) of the target protocol,
we need to get the pointer to its interface through the
LocateProtocol boot service (e.g., Line 2 of Listing 1).
If successful, the LocateProtocol service will update the
3rd argument (e.g., PxeBoot at Line 5 in Listing 1) with
the address of the interface. The protocol functions can be
invoked through the function pointers within the interface, e.g.,
PxeBoot->SetPackets on Line 14 in Listing 1.

B. Vulnerabilities Study

As mentioned before (in § II-A), DXE interfaces are the
primary attack surface of UEFI. Our study determined that the
majority (71%) of vulnerabilities are in protocols. Furthermore,
49% of them are memory corruption vulnerabilities. Since
protocols constitute most DXE interfaces and also have a high
rate of vulnerabilities, our work primarily focuses on fuzzing
protocol interfaces. More details on the vulnerability study can
be found in Appendix A-B.

III. THREAT MODEL

The Figure 1 highlights our threat model. We assume that
phases prior to DXE (i.e., SEC and PEI) are secure, as there
is no direct way to interact with these phases during the boot
process.

As indicated by in Figure 1, we aim to find bugs in
the code running in the UEFI or pre-OS boot environment,
specifically ones that can be triggered through DXE interfaces
or device drivers. We use a UEFI application to interact with
the UEFI environment through DXE services. Furthermore,
we adopt the malicious external peripherals (e.g., USB or
Display device) model and interact with device drivers by
providing arbitrary data through peripherals. We represent the
input injection points by in Figure 1.

Note that, even though the SMM has been initialized at this
point, we do not focus on SMI handlers, which is the focus
of several recent works on UEFI security [47]–[49].

IV. CHALLENGES

Given a protocol (i.e., GUID) and (optionally) the target
interface function ( f ) (e.g., SetPackets or GetInfo in List-
ing 1), our goal is to perform coverage-guided fuzz testing of
the function. However, the following challenges exist:

1) Input Generation: We need to use the input data (i.e.,
fuzzer provided data) to generate arguments of the appro-
priate type to invoke f . This requires identifying the data
type of parameters and a method to generate values of
corresponding types. However, the use of generic types
(i.e., void *) in function signatures makes it challenging
to identify the precise type of corresponding parame-
ters. As shown in Table I, there is a prevalent use of
void* types in UEFI protocols. e.g., the GetInfo interface
function in Listing 1. Even when the type is known,
the requirement of state-dependent objects makes it chal-
lenging to generate corresponding objects from arbitrary
data. For instance, in Listing 1, the Packet argument (of
EFI_PXE_BASE_CODE_PACKET type) for SetPackets function
(at line 14) need to be created by calling GetInfo function,
which is another interface function of another protocol.
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Fig. 2: FUZZUER Overview.

Furthermore, the GetInfo function uses void** type for
the Packet parameter, which makes existing type-based
dependency techniques [22] inapplicable. This is similar to
the FILE* parameter to fread function in libc. Where we
need to call the fopen function to generate a valid object of
FILE* type. Passing arbitrary objects of FILE* type results
in error return of fread. We will further demonstrate this
problem in § VI.

2) Feedback and Bug Identification (Engineering Chal-
lenges): The hardware-dependent nature of UEFI poses
engineering challenges in obtaining coverage information
and using it as feedback to existing fuzzing techniques.
Moreover, the commonly used bug detection enhancements,
especially sanitizers (e.g., ASAN [37]), depend on OS
abstractions, e.g., virtual memory for shadow memory man-
agement by ASAN. Such abstractions are absent in UEFI
environment, which has custom memory management and
layout. Consequently, these techniques must be customized
and re-engineered for the UEFI environment.

V. FUZZUER

We first present a brief overview (§ V-A) and then the
details of the individual components (§ V-B). Finally, we will
present the necessary implementation details (§ V-C).

A. Overview

Figure 2 shows the overview of FUZZUER, which has
three main components: FIRNESS (top-left), instrumentation
(bottom-left), and testing (bottom-right).

Given a protocol of interest (P), (optionally) a function
of interest ( f ), and EDK-2 source code, FIRNESS generates a
source level harness (i.e., C code) that will invoke f (or all
functions in P) with well-formed arguments of the appropriate
type. FIRNESS handles the challenge of Input Generation
(§ IV) using a set of static analysis techniques (§ V-B) and
generates C code that will create well-formed input arguments
from the input. The source level harness will be compiled
into an UEFI application (FUZZUER APP in Figure 1) for the
target firmware and will run in the UEFI shell. The FUZZUER
APP will invoke target function (s) by generating well-formed
arguments from the input.

We designed a EDK-2 friendly address sanitizer instrumen-
tation (§ V-C4) that will handle the memory layout and allo-
cation semantics of EDK-2. The instrumentation component
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adds the necessary compile-time instrumentation to enable our
sanitizer and produces the instrumented EDK-2 firmware.

Finally, our testing component will run the FUZZUER
APP atop the instrumented EDK-2 firmware in a simulated
environment, which consumes input and provides coverage
information. We will use existing fuzzers to provide the input
and map the coverage information as feedback.

B. FIRNESS

We first present some necessary terminology and then
present each component of our technique.

1) Terminology:

• Functions (F), Function of interest ( fI), and Call Sites
(CSites): We use F to represent the set of all functions in
the given program and f as an abbreviation for a function.
fI is the function (driver or service function) of interest for
which we need to generate the harness. We use CSites to
denote all call-sites (i.e., call instructions) in the program.

• Input Parameters (In( f )): A parameter used by a func-
tion f as its input is considered an input parameter. By de-
sign, all parameters of scalar types (e.g., int32_t) are input
parameters. However, pointer type parameters are input only
if they are read by the function. In( f ) is the set of input
parameters to f and is represented as a set of non-negative
numbers (N) indicating the position of the corresponding
parameters. For instance, In(strncpy)= {1,2}, as the second
(source pointer) and third (length) parameters are used as
inputs, i.e., only read from.

• Output Parameters (Out( f )): Similarly, a pointer param-
eter used by a function f to write its output is considered
an output argument. Specifically, the pointer parameter will
only be written by the function. Note that an output param-
eter should be a pointer (or reference) – as only updates
to parameters passed as references are visible to the caller.
Similar to In( f ), we use Out( f ) to indicate the set of output
parameter indices to f . For instance, Out(strncpy) = {0}, as
the data will be written to the first parameter, i.e., destination
pointer.

• Generator Functions (GF , GF(τ)): These are func-
tions that produce a well-formed (i.e., semantically valid)
value of a type τ . We use GF to represent the set of
all generator functions, and GF(τ) is the set of gen-
erator functions for type τ . For instance, fopen re-
turns FILE * and is a generator function for FILE * type.
Similarly, png_read_info(p, i) reads an info struct from p

(a pointer to png file) into i (an png_info * type), hence
is a generator function for png_info * type. We consider
a function with a return type or having non-zero output
parameters as a generator function of the return type or the
type of the corresponding parameter, respectively.

• Constant Values (C): These are constant values that can be
used in a program. These constants can be numerical values
(i.e., integers, floats, chars), composite types (i.e., structs),
strings (i.e., char *). e.g., 1, 3.45, "hello", etc. We use C
to indicate the set of all constants in a given program.

• L-Value Expressions (LRExp, Lr(E)): These are C-
program expressions that can be used as lvalues [24].
For instance, p->value, v, *(ptr+2) are L-value ex-
pressions, whereas, (a+b), &h are not L-Value expres-

Listing 2 Example demonstrating function pointer assign-
ments.
1 typedef void (*FuncPtr)();
2 struct protocol{
3 FuncPtr func1;
4 FuncPtr func2;
5 };
6 void call1(){...}
7 void call2(){...}
8 ...
9 protocol funcptrs = {call1, call2}; 1

10 ...
11 protocol fptr2;
12 ...
13 fptr2->func2 = call1; 2

sions. We use LRExp( f ) to denote the set of all L-
Value expressions in function f . For a given expression
E, Lr(E) returns the most dominant L-value sub-expression
in E. For instance, Lr(*(a+b)) returns *(a+b), Lr(b+2)
returns b. Whereas Lr(&(ptr−> c)) returns ptr->c. How-
ever, Lr(”he”) returns /0, indicating there is no L-value sub-
expression.
• Program Points: Each statement in a program has a pro-

gram point or location l, and L( f ) represents the set of all
program points in f . Similarly, for an expression e, L(e)
gives the program location of e.

2) Preprocessing: Here, we collect all the necessary infor-
mation required for our technique. Specifically, input (In) and
output (Out) parameter indices for all functions and targets of
indirect calls, i.e., function pointer calls.

We use source-level annotations to identify input and
output parameters. EDK-2 coding standards require all function
parameters to be marked as input (using IN annotation) or
output (using OUT annotation). This is illustrated on lines 11,
12, and 13 in Listing 7 (in Appendix). These are similar
to __user annotations [23] in Linux kernel to mark pointers
containing addresses from user space. We analyze the function
declarations of all functions and consider the parameters anno-
tated as IN as input and OUT as output parameters, respectively.

To identify function pointer targets, we capture all explicit
assignments to the corresponding function pointer. This is
similar to steensgaard analysis [40], a flow-insensitive points-to
analysis technique. Except that, we do not account for multiple
indirect pointers, i.e., fptr **p. We also look for constant
initializations, such as structure initialization. In Listing 2,
the targets for func2 field of protocol structure are {call2,
call1}, because of the initialization (1) and explicit assign-
ment (2). Note that our technique is object-insensitive [38],
i.e., all objects of the same type are considered the same.

3) Reaching Definition Analysis: For each function f , our
goal is to collect possible definitions of its L-Value expressions.
Specifically, for a given function f , we collect all of the
possible definitions of its L-value expressions (i.e., LRExp( f ))
that can reach various program points in f (i.e., l ∈ L( f )). As
mentioned in § V-B, these collected values will be used later
in call-site analysis to identify the possible ways to generate
inputs to the target function or generators.

Definitions: For pointer L-value expressions (e.g., ptr), we
consider both direct definitions (i.e., ptr=NULL) and through
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Listing 3 Example demonstrating valid definitions.
1 ptr->fld = NULL; Ë
2 if (..) ptr->fld = p; é
3 // Out(read_fld) = {1}
4 if (..) { read_fld(x,ptr->fld); Ë }
5 // targets(tbl->f) = {func}
6 tbl->f(1, ptr->fld);

E1 = E2 ,(Lr(E1)≡ lr)∧ ((E2 ∈C)∨ (E2 ∈ GF))

E2 : f (a0, ...,an) ,( f ∈ GF)∧ (Lr(ai)≡ lr)∧ (i ∈ Out( f ))

Fig. 3: Conditions that need to be satisfied by an expression
(E2) to be considered as a definition for lr.

indirection (i.e., *ptr = 1) as definitions of the expression. For
non-pointer expressions, we only consider direct definitions.
Furthermore, we only consider definitions that are constants
or generator functions. In other words, the definitions set can
only contain constants or function calls. This design decision
enables us to easily generate fuzzing harnesses, which we will
explain in § V-B5. Formally, for a given L-Value expression lr,
we consider an expression E2 to be its definition if it satisfies
one of the conditions as shown in Figure 3. For instance, the
example in Listing 3 shows the definitions of ptr->fld that are
considered (Ë) and ignored (é). Note that, Out(read f ld) =
{1} indicates that second parameter (index 1) to read_fld is an
output parameter and hence the value pointed to by ptr->fld

will be updated (i.e., defined) by read_fld.

For each function, we perform the standard reaching def-
inition analysis [4] on its Control Flow Graph (CFG) by
considering definitions that are constants or through gener-
ator functions. We record the information into the reaching
definition map (ψ), which stores the set of definitions of an
L-Value expression reachable at a program point, i.e., ψ : (L×
LRExp( f ))→ (C∪GF). For Listing 3, at line 6, ψ(6, ptr→
f ld) = {NULL,read f ld(x, )}.

4) Call-Site Analysis: In this phase, we collect Argument
Value Sets (Γ) of all input parameters at each possible call-
site of the function of interest ( fI) and generator functions
(GF). Specifically, at each call site corresponding to fI or a
generator function, we record the possible values that can reach
each input parameter. We collect the information in a map, Γ,
indexed by the location of the call site, target function (i.e., a
target of the call site), and an input argument index. Formally,
Γ : (L× ( fI ∪GF)×N)→ (C∪GF).

We use the reaching definition map (ψ) generated from
the previous phase (§ V-B3) to compute Γ. For each call-site
cs of an interesting function, we collect the values that can
reach each input parameter using ψ . If an argument value
is a constant, we just record the corresponding value. We
provide a formal algorithm of our approach in our extended
report [2]. For the code in Listing 3, consider that our fI
is func, In( f unc) = {0,1} and func as one of the targets of
the call-site at line 6. Using ψ from § V-B3, we compute Γ as:
Γ(6, f unc,0)←{1}, Γ(6, f unc,1)←{NULL,read f ld(x, )}.

5) Harness Generation: In this phase, we generate the
fuzzing harness for fI and necessary generator functions using
the argument value sets (Γ) generated in the previous phase
(§ V-B4). The fuzzing harness will use the provided input

(e.g., from a fuzzer) to create well-formed arguments of the
appropriate type and use them to invoke fI . For stateful types
(e.g., EFI_PXE_BASE_CODE_PACKET in Listing 1), the fuzzing
harness might need to use generator functions to create a value
of the appropriate type. Specifically, creating a harness for fI
could involve creating a harness for certain generator functions.

We will perform our analysis on both fI and functions
in GF . First, for fI and all functions in GF , we will merge
(and remove duplicates) the argument value sets (Γ) from each
call site to create consolidated value sets (Γv). Specifically,
Γv : (( fI∪GF)×N)→ (C∪GF), which is simply a union of all
argument values for each function and their input parameters
across various call-sites, i.e., ∀ f ∈ ( fI ∪GF), i ∈ In( f ):

Γv( f , i) =
⋃

cs∈CSites( f )

Γ(cs, f , i)

Second, we will determine the data type of each argument
based on the consolidated values (§ V-B5a). Finally, based on
the data type (§ V-B5b), we will synthesize methods that will
create values of the appropriate type from the input. These
values will be used to invoke fI .

a) Arguments Type Identification: For all functions in
GF and fI , our goal is to identify the data type of all its
input parameters. As mentioned in § IV, the common approach
of determining parameter type through function signature is
ineffective because of the prevalent use of generic parameter
types (i.e., void *).

We capture parameter types from various call-sites of each
function. Specifically, for each input parameter, we use the
argument values passed at various call sites to determine the
expected data type. Specifically, for a function f (∈ (GF ∪
fI)) and its input parameter i (∈ In( f )), we find the set of
unique data types of all argument values passed at different
call sites, i.e., unique data types of values in Γv( f , i). If the
number of unique data types is less than a pre-defined threshold
(Maxτ , we found Maxτ = 3 to work well in practice), then we
consider the type of the majority of values as the type of the
parameter For instance, if two values are of type struct A*,
and another is of struct B*, then we consider struct A* to
be the parameter type. However, if the number of unique types
is more than Maxτ , then we consider the parameter as truly
generic (i.e., which can accept any type), e.g., the src and dst
parameters of memcpy function.

b) Arguments Value Generation: We generate values
for each input parameter of fI based on the identified type
as described below:

• Scalar Types: Primarily, we generate a value of appropriate
type from the input data (i.e., provided by a fuzzer). For
instance, for int32, we will read 4 bytes from input into
a int32 variable and use it as the argument. However, if our
call-site analysis identifies constant argument values for the
parameter, we randomly (at runtime) choose a value from
these constants (from Γv) or input data.
• Composite Types (e.g., struct): If the type has generator

functions, we create harnesses for each generator function
and randomly (at runtime) use one of the generator functions
to create a value.
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We also check whether the composite type is creatable, i.e.,
can be created from raw bytes. Specifically if the type is not
recursive and does not contain nested types that are more
than two levels deep. For creatable types, we create values
by randomly choosing one of the generator functions or from
input data.

• Pointer Types: We create a heap object of the underlying
type and recursively populate the contents of the object
based on the type.

c) Harness for Generator Functions: We use the same
approach as described above to create harnesses for generator
functions. Specifically, we identify the data types (§ V-B5a)
and generate values for each argument according to the type
(§ V-B5b).

Recursive Dependencies: We discard generator functions
that result in recursive dependencies. For instance, consider
a generator function f that requires an argument of type
τ1 and generates a value of type τ2. Similarly, f2 requires
τ2 and produces τ1 and f3 requires τ3 and produces τ1.
Creating a harness for f requires producing a value of τ1 and
GF(τ1) = { f2, f3}. However, we only consider f3 as using f2
might lead to recursive dependencies. Similarly, to generate
values for f2, we do not use f .

C. Implementation

As mentioned before (§ II-A), we use EDK-2 as our
target UEFI implementation because of its prevalent use.
Our implementation targets source-level EDK-2 and generates
source-level harnesses; this requirement guided a few of our
design decisions – we elaborate more on this in Appendix A-E.
FIRNESS is implemented as the set of CLANG-15 source level
analyses passes, and the harness generation uses a set of prede-
fined templates. We added support for ASAN instrumentation
through a set of source-level patches to EDK-2. In total, our
implementation includes 3.5K lines of C++ code (CLANG-15
passes), 151 lines of C code (harness helper), 2.7K lines of
Python, and 7.2K line modifications (for ASAN support) to
EDK-2 source. Our implementation is available as open source
at https://github.com/BreakingBoot/FuzzUEr.git.

1) Input: The input for our system is the location of
EDK-2 source code (we expect the code to be compilable
using CLANG-15) and a text file containing the target DXE
interface of interest. As mentioned in § II-A2, we catego-
rize DXE interfaces into services and protocols. Services
can be specified by their type and the service name, e.g.,
(RuntimeService, GetVariable) for GetVariable runtime
service (as illustrated in Listing 8). Protocols can be spec-
ified using their GUID and (optionally) the target interface
function name, e.g., (<GUID for PxeBoot>, SetPackets) for
SetPackets interface function in Listing 1.

2) FIRNESS: During pre-processing, in addition to the
function’s input and output parameters, we also record macros,
type aliases, enums, structures, and header files where each
type is declared. This is needed for our harness generation,
which generates compilable C code with necessary includes.

The reaching definition and call-site analyses are com-
bined into a single CLANG-15 pass, whose output will be
used to perform argument-type identification. Finally, all the

necessary information will be captured in a JSON file (i.e.,
firness.json), which we use to generate the source-level
harness. The firness.json contains analysis results for
each call site of the target function. We present more details
of our implementation using an example in Appendix A-D.

3) Harness Generation: We use the generated
firness.json to generate C code (specifically a UEFI
application) that will serve as the harness to fuzz the target
function. We have created a simple helper library (151 lines
of C code) that contains the common functions needed for
our harness. This is a one-time effort. For instance, our
helper library contains the ReadBytes(dst_ptr, num_bytes)

function that will read the desired number of bytes (num_bytes)
from input and store them in the given pointer (dst_ptr).

Our harness generation component consolidates the infor-
mation across different call sites for all relevant functions (i.e.,
the target function and generators). For each argument, we
identify the final argument type (i.e., majority type as explained
in § V-B5b) and generate C code to create values of the
appropriate type (by using generators when applicable). The
Appendix A-F provides more details of our harness generation
implementation.

4) Sanitizer Support: It is well-known that sanitizers [39],
such as Address Sanitizer (ASAN), increase the bug detection
capability of testing techniques. Our goal is to add ASAN
support for EDK-2. As mentioned in § IV, virtual memory
support is not available in UEFI’s pre-boot environment, and
also EDK-2 has custom memory management, which makes
it challenging to use the default ASAN instrumentation. A
previous work [42] tries to add ASAN support to EDK-2.
However, it is outdated (6 years old) and does not work with
the latest version of EDK-2.

We re-implemented ASAN support for EDK-2 by mod-
ifying the memory layout of EDK-2 and configured ASAN
shadow memory based on the runtime memory layout. Our
modifications also enables ASAN support inside virtual plat-
forms such as Simics.

Additionally, we also need to instrument EDK-2 memory
management functions (e.g., CopyMem, SetMem). We couldn’t
simply modify the ASAN compiler passes to instrument all
of the function calls to CopyMem and SetMem because the
main memory system isn’t available until the end of PEI,
so we manually wrote an instrumented version of the base
memory library that contains the EDK-2 memory management
functions. Our instrumented version uses the existing base
memory library just after the initialization of the main memory
at the end of the PEI phase.

VI. EVALUATION

We evaluate FUZZUER by answering the following ques-
tions:

Q1 (Effectiveness of FIRNESS): How effective is FIRNESS
in identifying necessary information to generate harness?
What is the accuracy of the recovered entities? What is
the accuracy of the generated fuzzing templates?

Q2 (Fuzzing Effectiveness): How effective is FUZZUER in
fuzzing UEFI protocols? What is the code coverage?
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Bug finding ability? Did FUZZUER find any new vulner-
abilities?

Q3 (HBFA Comparison): How does FUZZUER perform in
a best-effort comparison to HBFA (an existing testing
technique)?

Q4 (Ablation Study): What is the contribution of each of our
techniques on the overall effectiveness of FUZZUER?

We first explain the setup and different configurations of
FUZZUER and then investigate our questions.

A. Setup

We used Intel’s TSFFS [21] as our testing platform as
it uses libAFL [16] (state-of-the-art fuzzing framework) for
input generation and supports virtualized execution of EDK-2
through Simics. We also made minor robustness fixes to handle
input generation, and instruction tracing needed to capture the
coverage information.

1) Protocol Selection: We selected the mainline version
of EDK-2 [46] (1eeca0) as our target codebase and used
BoardX58Ich10 as our target configuration, as it covered many
protocols and is supported by Simics. We selected 25 protocols
spanning six categories as summarized in Table I. These
protocols cover diverse functionalities supported by EDK-2
and are available in our target configuration . We provide
more details of these protocols in the extended report [2]. As
mentioned in § II-A2b, each protocol has multiple interface
functions. In total, we tested on a total of 150 interface
functions.

2) Known Vulnerabilities: As our bug dataset, our goal
was to forward port previously reported vulnerabilities in our
target protocols to the latest version of EDK-2. However, it
was challenging to port most of them because of major design
changes in the latest version. Furthermore, CVE descriptions
missed the patch information, and also commit messages had
no CVE information. Nonetheless, we identified patches for
three CVEs by painstakingly sifting through commits near the
CVE reported date and identified the corresponding patches,
which we ported to the latest version of EDK-2. Another
major limitation with porting the identified CVEs was the
patches that were provided were OEM specific and did not
have corresponding patches in EDK-2.

3) FUZZUER Configurations: As mentioned in § V-B,
FIRNESS collect information about types (T), generators (G),
function pointers (P), and generate source level harness (F).
We created various configurations of FUZZUER to evaluate
the contribution of different techniques of FIRNESS. The
letters within square braces indicate different techniques in the
corresponding configuration.

• Random Input (Fzr) [F]: In this configuration, we do not
use any type information or generators in FIRNESS. Our
harness just invokes each interface function with random
values, ignoring the parameters’ data type. This serves as the
baseline indicating direct use of coverage-guided fuzzing on
UEFI interfaces. This is, in principle, similar to the existing
technique, i.e., SIMFUZZER [47].

• No generators (Fzg) [F,T,P]: Here, we do not use gen-
erators in our harness. Specifically, our harness will not
use any generator functions to create argument values.

This configuration aids in demonstrating the importance of
generator identification in FIRNESS.
• No type information (Fzt ) [F,P,G]: Here, we ignore type

information while generating argument values. Specifically,
we generate argument values using generators (if available)
or random data. This configuration aids in demonstrating the
importance of type identification (§ V-B5a).
• No points-to information (Fzp) [F,T,G]: As mentioned in

§ V-B2, we use points-to analysis to determine function
targets, which is needed for our call-site analysis (§ V-B4).
We ignore points-to information in this configuration, which
aids in demonstrating the importance of handling indirect
calls. This is, in principle, similar to FUZZGEN [22], which
also tries to generate fuzzing harnesses but does not consider
function pointers.

• Complete system (Fz) [F,T,P,G]: This is the complete
system with all the techniques.

4) Fuzzing Setup: We tested each protocol (i.e., all its
interface functions) individually for 24 hours for each of
the configurations following the recommendations by Kless
et al. [26]. Specifically, we generated one harness for each
protocol and tested it for 24 hours for each configuration
(§ VI-A3). The harness includes all the interface functions.
We decide which interface function to invoke based on the
first byte of the input.

B. Q1: Effectiveness of FIRNESS

There are three main components of FIRNESS: Reaching
definitions (i.e., identifying constants and generators (§ V-B3)),
Identifying interface function pointer targets (needed for call-
site analysis (§ V-B4)), Identifying argument types (i.e.,
scalars, structure pointers, scalar pointers (§ V-B5a)), and
finally harness generation (§ V-B5c).

1) Metrics: We evaluate each of these components in
terms of accuracy, i.e., number of true entities identified
by our analysis. For parameter-based entities (e.g., possible
constants passed), we average the accuracy across all function
parameters and compute a single accuracy value. For instance,
consider an interface function with 2 parameters, and the
constant value identification accuracy (CV ) is 50% for one
parameter and 100% for the other. Then, we compute CV for
the function as 75%, i.e., (100+50)/2. We do not use precision
and recall, as our analysis did not have false positives (i.e.,
false positive rate is 0%) because our implementation is done
at the source level.

a) Computing Accuracy Metrics: We manually verify
the results of each component for every protocol interface
function and compute the accuracy score.

2) Reaching Definitions: As mentioned in § V-B3, the
goal of our reaching definition analysis is to identify, for
each parameter, constants passed as arguments and generator
functions that can produce an argument. We evaluate both of
these aspects, i.e., accuracy of (i) identifying constant values
passed as arguments; and (ii) generators of each argument.

a) Constant Value Identification Accuracy (CV ): The
Constants chart in Figure 4 shows the Cumulative Distribution
Function (CDF) of CV across all interface functions for each
protocol category. Specifically, a point (x,y) on a line of a
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TABLE I: Protocol Selection

Categories Protocols Number of
Functions

Functions with at least
1 void* type

Number of Parameters
Min Max Mean Median

USB USB IO 13 7 1 7 4.2 4
USB2 HC 13 6 2 12 6.6 4

TEXT

PRINT2S 10 0 3 5 3.8 4
HII FONT 4 2 5 12 8 7.5
UNICODE 6 0 2 4 3 3

JSON 4 0 2 5 3.5 3.5
GRAPHICS 3 0 2 10 5.3 4

CONTROLLER

NVME 4 1 2 4 3 3
DISK IO 2 2 5 5 5 5

IDE 6 0 3 4 3.8 4
SD MMC 5 1 2 4 2.8 3
INCOMP 1 1 7 7 7 7

PCI ROOT 14 8 1 7 4 4

SMM

S3 SMM 4 3 2 5 3.75 4
SMM BASE2 2 0 2 2 2 2
SMM COMM 1 1 3 3 3 3
SMM CONT 2 0 2 5 3.5 3.5

Driver Helper
FW VOL 7 0 1 5 2.9 2
HEALTH 2 2 4 6 5 5

HII DECODER 3 2 3 5 4 4

Network

TCP4 10 0 1 6 2.6 2
IP4 4 4 3 4 3.5 3.5
IP6 9 0 1 6 3.2 2.5

SIMPLE NET 13 4 1 7 3.6 3
MANAGED NET 8 0 1 4 2.4 2

Cumulative 150 44 1 12 4 3.5

TABLE II: List of known vulnerabilities used for our evaluation and New vulnerabilities found by FUZZUER. Ë and é indicate
whether the corresponding configuration found it or not, respectively.

Found ByID Protocol Function Bug Type Status Fzr Fzg Fzt Fzp Fz

Previously Known Bugs

1 IP4 Ip4PreProcessPacket Buffer Overflow Previously
Known é é é é é

2 HII FONT UefiFileHandleLib Buffer Overflow Previously
Known é é Ë Ë Ë

3 HII FONT DevPathToTextUsbWWID Buffer Overflow Previously
Known é é Ë Ë Ë

New Bugs

4 DISK IO DiskIoCreateSubtaskList Buffer Overflow CONFIRMED Ë Ë Ë Ë Ë

5 ALL* CR() Null Pointer
Dereference CONFIRMED Ë Ë Ë Ë Ë

6 PRINT2S ShellFileHandleReadLine Buffer Overflow CONFIRMED Ë Ë Ë é Ë
7 PRINT2S ShellFindFilePathEx Use After Free CONFIRMED Ë Ë Ë é Ë

8 PRINT2S InternalIsOnCheckList Arbitrary Pointer
Write REPORTED Ë Ë Ë é Ë

9 UNICODE EngStriColl Null Pointer
Dereference CONFIRMED Ë Ë Ë Ë Ë

10 UNICODE EngStrLwr Null Pointer
Dereference CONFIRMED Ë Ë Ë Ë Ë

11 UNICODE EngStrUpr Null Pointer
Dereference CONFIRMED Ë Ë Ë Ë Ë

12 UNICODE EngMetaiMatch Null Pointer
Dereference CONFIRMED Ë Ë Ë Ë Ë

13 UNICODE EngFatToStr Null Pointer
Dereference CONFIRMED Ë Ë Ë Ë Ë

14 UNICODE EngStrToFat Null Pointer
Dereference CONFIRMED Ë Ë Ë Ë Ë

15 USB IO UsbIoControlTransfer Use After Free CONFIRMED é Ë é Ë Ë

16 S3 SMM InternalSmBusExec Null Pointer
Dereference REPORTED é é Ë é Ë

17 MANAGED NET EfiDhcp6InfoRequest Arbitrary Pointer
Read REPORTED é Ë Ë Ë Ë

18 HII FONT HiiStringToImage Arbitrary Memory
Write REPORTED é Ë Ë é Ë

19 GRAPHICS FrameBufferBltLibVideoToBltBuffer Buffer Overflow REPORTED é Ë é Ë Ë

20 FW VOL FwVolBlockReadBlock NULL Pointer
Dereference REPORTED é é Ë é Ë

21 FW VOL FwVolBlockReadBlock NULL Pointer
Dereference REPORTED é é Ë é Ë

22 USB2 HC EhcAsyncInterruptTransfer NULL Pointer
Dereference REPORTED é Ë Ë é Ë

23 USB2 HC EhcAsyncInterruptTransfer NULL Pointer
Dereference REPORTED é Ë Ë é Ë
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Fig. 4: CDF of Accuracy of different components of FIRNESS.

protocol category indicates that y% of interface functions have
an accuracy of x% or less. As we can see from almost flat
lines, most functions have 100% accuracy. However, there are
cases (e.g., Text and Controller) where we fail to identify the
constants. The main reason for this is missing value flow
information and path constraints. For instance, in the code
if(a==2) foo(a);, although the argument a is not a constant,
the value that a can hold at the call site is a constant i.e., 2.
Our analysis fails to capture such cases as we do not track
value flows [43].

b) Generators Identification Accuracy (G): The Gener-
ators chart of Figure 4 shows the CDF of G across all interface
functions for each protocol category. As indicated by almost
flat lines, most of the functions have 100% accuracy. The main
reason for a failure to identify a generator function is when
the type of interest is resolved to a scalar type. An example
can be seen in Appendix A-G.

3) Identifying Function Pointer Targets (FPtr): The Func-
tions chart of Figure 4 shows the CDF of FPtr across all
interface functions for each protocol category. We are able to
accurately recover the function pointer targets for all protocol
categories except for SMM. The main reason for missing
function pointer targets is the lack of support for multi-level
function pointers (i.e., **fptr). Our current implementation
does not track the loads and stores across these multi-level
pointers, resulting in missing function pointer targets.

4) Identifying Argument Types: We separate accuracy
across scalar types (Scalars CDF in Figure 4), struct or
struct pointers (Structures CDF in Figure 4), and scalar
pointers (Pointers CDF in Figure 4). As indicated by the flat
lines, the accuracy of scalars and pointers is 100% for most
of the interface functions. However, the structure accuracy is
lower for interface functions related to SMM protocol category.
The main reason for this is the lack of call sites, which results

in no argument values and, consequently, failure to identify
types. For example, the EFI_S3_SAVE_STATE_PROTOCOL only
has call sites for 1 out of 4 of the functions, and the 3 functions
that don’t have call sites all have at least 1 void* parameter.
This lack of argument values results in failure to identify
parameter types and corresponding generator functions.

5) Harness Generation: The Figure 7 (in Appendix) shows
the CDF of the accuracy of the harness generation across all
interface functions for each protocol category. For almost all
the interface functions, the harness is 80% accurate.

One of the main reasons for the drop in accuracy is
recursive generators. As mentioned in § V-B5c, we ignore
generators with recursive dependencies and consequently will
not include them in the harness. Another reason is the call-
backs; few interface functions (specifically of USB2_HC proto-
col) expect call-backs as one of their arguments. However, our
current implementation does not support call-back arguments
and results in an inaccurate generator (i.e., we pass NULL in
place of the call-back.)

C. Q2: Fuzzing Effectiveness

We use two metrics to evaluate the fuzzing effective-
ness: code coverage and bug-finding ability. As mentioned in
§ VI-A4, for each protocol, we generate a harness that invokes
all interface functions within the protocol.

1) Code Coverage: We measure code coverage as the
percentage of reachable code covered throughout fuzzing. For
each protocol, we use the call graph of each interface function
to identify all reachable functions. We compute the code cover-
age as the percentage of code covered within these reachable
functions. The Figure 5 shows the code coverage over time
for each protocol. Specifically, the legend Fz indicates the
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Fig. 5: Coverage Information of various FUZZUER configuration (§ VI-A3) across various protocols.
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coverage achieved by FUZZUER with all the information from
FIRNESS.

Although we executed each harness for 24 hours, the
coverage did not improve after 10 hours. For most of the
protocols, FUZZUER quickly ( < 1 hour) achieved its peak
coverage. This is because our harness contains all the type
information and generators, creating well-typed and formatted
argument values from fuzzer data. This reduces the possibility
of mutation techniques to produce well-typed values as our
harness already does the heavy lifting of converting arbitrary
data into well-typed values.

On average, FUZZUER achieved ∼ 40% coverage across
all protocols. We currently are underestimating the coverage
because of the extensive use of function pointers and runtime
resolution in the UEFI. Specifically, we do not consider
function pointers while computing reachable functions. Conse-
quently, the coverage of indirectly (through function pointers)
triggered functions will not be captured. We performed a
detailed analysis of the lack of coverage and identified complex
path constraints as the primary cause. We provide more details
with an example in Appendix A-H.

2) Bug Finding Ability: The Table II shows the results. As
mentioned in § VI-A2, we forward ported three previously
known vulnerabilities into the latest version (ours) of EDK-2.
The top part of Table II under Fz column shows the bugs
found by FUZZUER. 66% (i.e., 2 out of 3) of previously
known vulnerabilities were found by FUZZUER. Although the
absolute number is low, these results still demonstrate that
FUZZUER can find previously known bugs.

a) New Vulnerabilities: Overall, FUZZUER found 20
new security vulnerabilities across all protocols. The bottom
part of Table II shows the details of these vulnerabilities.
We reported all these vulnerabilities to EDK-2 developers,
and most (i.e., 12 (60%)) of the vulnerabilities have already
been confirmed. Although many vulnerabilities are NULL-ptr
dereferences, there are high-severity vulnerabilities such as
buffer overflows and use-after-free. Even the NULL-ptr deref-
erences are severe as these are present in the UEFI’s pre-
boot environment and could be exploited to make the device
unusable (i.e., bricking the device). Our results demonstrate
that FUZZUER provides an effective technique to fuzz UEFI
interfaces.

3) Case Studies: We present case studies of two interesting
and high-severity vulnerabilities found by FUZZUER.

a) Incorrect Signature Check: As shown on line 23
in Listing 4, EDK-2 use FVB_DEVICE_FROM_THIS macro
to access EFI_FW_VOL_BLOCK_DEVICE pointer from the
protocol pointer. The macro performs an integrity check (as
shown on lines 7-8) to ensure that the pointer is not corrupted.
However, the macro fails to perform a NULL check, conse-
quently resulting in a NULL pointer dereference as indicated
by . This bug appears across all protocols with private data,
indicated by ALL* in the corresponding row of Table II.

Unfortunately, fixing this bug is not trivial. We need to
gracefully handle cases where the pointer is NULL. However,
just adding a NULL check in the macro is not sufficient because
the invalid value should be communicated to the target function
where the macro is used (i.e., FwVolBlockGetAttributes in

Listing 4 Incorrect signature check leading to NULL-ptr
dereference (ID 5 in Table II).
1 #define BASE_CR(Rec, TYPE, FD) \
2 ((TYPE *)((CHAR8 *)(Rec) - \
3 OFFSET_OF(TYPE, FD)))
4 #define CR(Rec, TYPE, FD, Sign) \
5 (DebugAssertEnabled () && \
6 (BASE_CR(Rec, \
7 TYPE, FD)->Signature != Sign)) ? \
8 #define FVB_DEVICE_FROM_THIS(a) \
9 CR(a, EFI_FW_VOL_BLOCK_DEVICE, \

10 FwVolBlockInstance, FVB_DEVICE_SIGNATURE)
11 EFI_STATUS
12 EFIAPI
13 FwVolBlockGetAttributes (
14 IN CONST
15 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
16 OUT EFI_FVB_ATTRIBUTES_2 *Attributes
17 ) {
18 EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
19 FvbDevice = FVB_DEVICE_FROM_THIS (This);
20 *Attributes = FvbDevice->FvbAttributes
21 & ˜EFI_FVB2_WRITE_STATUS;
22 }

Listing 5 Arbitrary Memory Write (ID 18 in Table II)
EFI_STATUS EFIAPI HiiStringToImage (
...
IN OUT EFI_IMAGE_OUTPUT **Blt,
IN UINTN BltX ,
IN UINTN BltY ,
) {
Image = *Blt;
BufferPtr = Image->Image.Bitmap

+ Image->Width  * BltY  + BltX ;
GlyphToImage (..., &BufferPtr );

}

Listing 4). Unfortunately, the macro is used in many places
in EDK-2 codebase, and the handling of NULL pointer must be
explicitly added to every macro use. EDK-2 developers agreed
to this and are in the process of making a design change to
check for EFI_FW_VOL_BLOCK_DEVICE pointer integrity.

b) Arbitrary Memory Read in Image Parsing: The
Listing 5 shows an arbitrary memory read because the interface
function fails to validate the coordinates (i.e., BltX, and BltY).
An attacker can pass very large values and make BufferPtr

point to any desired address. Later, the function GlyphToImage

writes to the address pointed by BufferPtr, resulting in an
arbitrary memory write vulnerability.

D. Q3: HBFA Comparison

Host Based Firmware Analyzer (HBFA) [34] by Intel is
an open-source userspace fuzzer for EDK-2. HBFA requires
EDK-2 protocol to be rehosted as userspace programs and
a harness to exercise interface functions. Consequently, to
test a protocol using HBFA, one must implement stubs for
all hardware-dependent features and write a harness that can
comprehensively exercise the protocol’s interface functions —
a tedious endeavor. Currently, three protocols are supported
by HBFA, i.e., USB2 HC, DISK IO, PCI ROOT. The stubs
and harnesses for these protocols are developed by EDK-2
engineers and are available in the main repository. We run
HBFA with the same setup (§ VI-A4) as FUZZUER.

11



TABLE III: HBFA(H) vs. FUZZUER(Fz) (§ VI-D)

Protocol USB2 HC DISK IO PCI ROOT
Tool H Fz H Fz H Fz

Harness LoC 63 1,391 597 319 312 1,098

Code Coverage (Number of Unique Edges)
Total Coverage 319 6,091 (↑19x) 1,413 8,797 (↑6x) 762 6,514 (↑8x)

Driver Coverage 138 2,041 (↑14x) 595 5,205 (↑8x) 117 3,690 (↑31x)

Number of Unique Bugs Found
Bugs Discovered 0 2 (↑200%) 0 1 (↑100%) 0 0

Listing 6 Snippet of HBFA’s DISK IO Harness
VOID
EFIAPI
RunTestHarness(

IN VOID *TestBuffer,
IN UINTN TestBufferSize
){
FixBuffer (TestBuffer);
DiskStubInitialize (TestBuffer, TestBufferSize,

BLOCK_SIZE, IO_ALIGN,
&BlockIo, &DiskIo);

FindUdfFileSystem (
BlockIo,
DiskIo,
&StartingLBA,
&EndingLBA
);

DiskStubDestory();
}

Table III shows the results. As indicated by the LoC
column, existing HBFA harnesses are smaller than the ones
generated by FIRNESS. Upon manual investigation, we found
that all these harnesses are simple and exercise protocols’
functions with mostly fixed data. However, as we explained
in § V-B, our techniques enable us to generate well-formed
arguments using input data, resulting in diverse arguments.

1) Coverage: In Table III, columns Total Coverage and
Driver Coverage show the code coverage (i.e., number of
unique edges in CFG) of the overall EDK-2 code and just
the protocol code, respectively. On the entire EDK-2 codebase,
FUZZUER with our automatically generated harness covered
significantly more (11x on average) code than HBFA. One of
the main reasons for this is the use of stubs in HBFA, which
prevents from exercising low-level EDK-2 code. Even on the
protocol code, FUZZUER performed significantly better with
17x (on average) more code than HBFA. This is because the
harnesses are simple and only cover known scenarios. For
example, Listing 6 shows a snippet of the HBFA’s harness (for
DISK IO protocol), which only covers a simple case.

2) Bug Finding Ability: As indicated in the Bugs Discov-
ered row of Table III, FUZZUER was able to find three previ-
ously unknown bugs while HBFA failed to find any bugs. This
is again due to the poor quality and overly simplistic harnesses
that fail to adequately test the protocols’ functionality and
properly utilize input to generate the necessary arguments. For
instance, Listing 6 is the harness used in HBFA. In contrast,
Listing 10 (in Appendix) is the harness automatically generated
by FIRNESS. Our harness enabled us to find one of the bugs
in DISK IO protocol, i.e., Listing 4 (discussed in § VI-C3),
which is missed by HBFA.

E. Q4: Ablation Study

Our goal is to investigate the contribution of different tech-
niques in FIRNESS to the overall effectiveness of FUZZUER.
As explained in § VI-A3, we ran FUZZUER under various
configurations with increasing amounts of information from
FIRNESS.

1) Coverage: The Figure 5 shows the coverage information
of various configurations for all protocols. Overall, FUZZUER
with full FIRNESS information (i.e., Fz) achieves the highest
coverage for most of the protocols. On the other hand, not
giving any FIRNESS information (i.e., Fzr) results in the least
coverage for most of the protocols. The impact of various
FIRNESS techniques varies across protocols. For instance,
Fzg (i.e., No generators) performs better than Fzt (i.e., No
type information) on the FW_VOL protocol. It’s the other
way round on USB2_HC. This is because of the diversity in
interface functions of different protocols. For instance, most
interface functions in the FW_VOL protocol have parameters
with no generators. Consequently, not using any generators
(Fzg) has less impact and thus higher coverage. Whereas
interface functions in the USB2_HC protocol has parameters
with generators, and consequently, not using generators has a
greater impact and lesser coverage. In a few cases, the coverage
of configurations not using complete FIRNESS information is
higher than Fz (i.e., using complete FIRNESS information).
This higher coverage is because of the error handling code
that gets executed because of passing invalid data. Such error
handling code will not be covered in Fz as it uses well-formed
types. An example of error handling code is explained in
further detail in Appendix A-H.

2) Bug Finding Ability: The Table II shows the bug-finding
ability of different configurations. Using complete FIRNESS
information (Fz) finds the highest number of bugs. Whereas
the random configuration (Fzr) finds the least number of
bugs. The bug-finding ability varies with different amounts of
FIRNESS information.

In summary, our results indicate that all components of
FIRNESS contribute to the overall effectiveness of FUZZUER.

VII. LIMITATIONS AND FUTURE WORK

In this section, we present the limitations of our work and
plans for future work:

• FIRNESS Limitations: The current design of FIRNESS can-
not handle recursive types and generators, which results in
poor harness accuracy for a few interface functions. As part
of our future work, we plan to enhance FIRNESS to handle
recursive types and also use flow analysis to determine more
constant argument values.
• Low Coverage: Although FUZZUER is effective at vul-

nerability finding, it has low code coverage (§ VI-C1).
We emphasize that this is not a fundamental limitation
of FUZZUER and can be improved by using a concolic
fuzzer [41] (instead of the libAFL).

VIII. RELATED WORK

A. Vulnerability Detection on Bootloaders/UEFI

Only a handful of works try to perform vulnerability
detection (VD) on UEFI framework. Works that focus on other
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TABLE IV: Qualitative comparison FUZZUER and related dynamic analysis and harness generation tools. Symbols Ë (yes),
(partial), and é (no) indicate the availability of the corresponding feature.

Tool Target
Component Open Source? Features

Supports
Arbitrary Types? (T)

Supports
Generators? (G)

Supports Function
Pointer? (P)

Generates Source
level Harness? (F)

Syscall and Library API Tools
FUZZGEN [22] Library APIs Ë Ë Ë é Ë

HFL [25] Kernel Syscalls Ë  Ë Ë Ë
DIFUZE [12] ioctls Ë é é Ë é

INTELLIGEN [50] Functions é  é é Ë

HOPPER [10] Library APIs Ë   é é
UEFI Tools

RSFUZZER [49] SMI Callouts é é é é é
EXCITE [14] SMI Callouts é é é é é

HBFA [34] Interface Models Ë é é é é
CHIPSEC [11] SMI Callouts Ë é é é é

SIMFUZZER [47] N/A é é é é é
FUZZUER (Our System) UEFI Interfaces Ë Ë Ë Ë Ë

bootloaders, such as Smartphone bootloaders [33], are not
applicable to UEFI because of fundamental differences in their
software architecture. Existing VD works can be primarily
classified into static or dynamic depending on the type of
analysis employed.

1) Static: Existing static VD tools focus on SMI handlers,
which are special high-privilege handlers installed by the UEFI
framework and are available to OS at runtime. Yin et al., [48]
uses protocol-centric static analysis on UEFI firmware binary
to identify privilege escalation vulnerabilities in SMI handlers.
There is a series of works by Gu et al., [9], [19] which use
network theory and graph algorithms to find logical errors
during boot, such as incorrect authentication mechanisms.

2) Dynamic: There are several tools [8], [11], [14], [34],
[47], [49] that try to perform dynamic analysis (such as
Fuzzing) for UEFI. The Table IV shows the summary of
all the relevant tools and the components they target, along
with supported features. Similar to static techniques, most
of the tools [11], [14], [49] focus on SMI handlers. SMI
Handlers differ from protocol interfaces because they don’t
rely on the system to be in a particular state, but instead
parse a given input structure to set or change the current
system state. CHIPSEC [11] framework provides a suite of
tools to perform forensic analysis of UEFI firmware and naive
fuzzing of SMI handlers. Bazhaniuk et al., [8] utilizes KLEE
to perform symbolic execution on SMM interrupt variables.
RSFUZZER [49] combines concolic execution and grey box
fuzzing to achieve better test cases and code coverage across
SMI handlers. Similarly, Intel’s tool EXCITE [14] performs
dynamic symbolic execution to achieve better code coverage
inside SMI handlers.

One of the first works that tries to perform fuzzing of
UEFI interfaces is Intel’s HBFA [34]. However, it requires
the target interface to be modeled as a standalone application
(by stubbing out interactions with the UEFI framework), a
tedious manual process, and hard to generalize across dif-
ferent types of protocols with complex parameters. Another
work, SIMFUZZER [47], tries to perform automated coverage-
guided fuzzing of the entire framework by feeding random
data from the simulator. However, SIMFUZZER does not care
about the parameter types and generators, greatly affecting its
effectiveness. This is similar to the Random Input configuration
(§ VI-A3) of FUZZUER. As we show in § VI-E, ignoring
types and generators greatly reduces fuzzing effectiveness.
Finally, SIMFUZZER is not open-source and is a proprietary

tool. Authors refuse to make the tool for public use or
evaluation. In contrast, as shown in Table IV, FUZZUER is
an open-source tool that focuses on fuzzing UEFI interfaces
by generating well-typed arguments. Table IV summarizes all
these techniques and the supported features.

B. Stateful Input Generation

There are several techniques that focus on stateful input
generation for the Linux systems [7], [10], [12], [18], [22],
[25], [50], [51]. Two of the techniques are based off modeling
program points as states to properly mutate those states to
achieve greater code coverage [18], [51]. While Ba et al., [7]
proposed a generalized analysis to find states in protocol
implementations, specifically network related protocols, and
use those states to increase the covered state space through
fuzzing. FUZZGEN [22] performs whole system analysis to
generate an abstract API dependency graph and is used to
generate libFuzzer [1] stubs to perform stateful fuzzing across
complex systems. FUZZGEN attempts to fuzz library functions,
which are conceptually similar to UEFI interfaces. However,
unlike FUZZUER, FUZZGEN requires typed parameters and
relies on API inference, assuming that the target function
declaration matches the library’s included definitions. This
is not the case in EDK-2, where target functions are called
through function pointers. This approach is akin to our Fzp
configuration, which, as demonstrated in § VI-E, does not
perform well for protocols in EDK-2. Similarly, INTELLIGEN
[50] automatically attempts to locate entry functions and then
generate a libFuzzer stub, but lacks support for generator
functions and will fail to identify functions that have void*
as entry functions. HOPPER [10], on the other hand, uses
a custom DSL to dynamically create harnesses for a given
library, but since it analyses the header files to capture type
information it will fail for cases where void* is prevalent.
Similarly, techniques for Kernel system call testing also lack
the required features and have several drawbacks. For instance,
HFL [25] performs hybrid fuzzing on Linux Kernel syscalls
by resolving indirect calls through Kernel-specific initialization
idioms. However, this is unreasonable in most cases for the
EDK-2, since protocols can be initialized arbitrarily, e.g.,
statically or dynamically as illustrated in Listing 2. While
DIFUZE [12] is an interface-aware fuzzing tool that analyzes
Android source code to generate valid input for kernel drivers,
however it lacks the ability to use generators or to infer
underlying void*.
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IX. CONCLUSION

We present FUZZUER a coverage-guided fuzzing frame-
work for UEFI interface functions. Given an interface function,
we use a combination of static analysis and templated harness
generation to craft a source-level harness (using the types and
corresponding generator functions) to exercise the function.
Our comprehensive evaluation shows that FUZZUER is an
effective technique to test UEFI interfaces as compared to
HBFA. FUZZUER discovered 20 new security vulnerabilities
in the latest version of EDK-2, an open source implementation
of UEFI.
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APPENDIX A

A. Details of DXE Services

As shown in Listing 8, services are accessed (marked
as ®) through EFI_SYSTEM_TABLE pointer, passed as the second
argument (marked as ) to the entry point of all UEFI compo-
nents, i.e., applications, drivers, OS loaders, etc. The services
can be further classified into boot and runtime services.

• Boot Services: Boot services are used during boot time
and unloaded when control is handed over to the operating
system. These services provide the functionality necessary
during booting – memory allocation, console input, and
output, handling boot variables, file and device I/O (i.e.,
USB or SATA drives), loading and starting UEFI applica-
tions/drivers, and managing the boot order. These services
are accessed through BootServices field of the system table
as indicated by ® in Listing 8. These services are removed
from memory by calling ExitBootServices() function,
which is usually done at the end of the BDS phase, right
before the operating system takes over control. In all our
examples, we use gBS to indicate ST->BootServices. For

TABLE V: UEFI Components and Categorization of Known
Vulnerabilities.

DXE Interfaces Vulnerabilities

Type Percentage
Contribution

Memory
Corruption Others Total

(% of Cummu)

Services
(Boot and
Runtime)

30% 3 (7%) 39 (97%) 41 (29%)

Protocols 70% 48 (49%) 50 (51%) 98 (71%)

Cumulative (Cummu) 139

instance, ST->BootServices->foo will be represented as
gBS->foo.
• Runtime Services: These services provide functional-

ity that is available even after the OS takes control.
These services provide access to non-volatile EFI variables
(e.g., BootOrder), system’s real-time clock, hardware resets,
etc. In general, Runtime Services provides a generic inter-
face to access platform-dependent resources. These services
are accessed through RuntimeServices field of the system
table as indicated by ® in Listing 8. Similar to gBS, we use
gRS to indicate ST->RuntimeServices.

B. Vulnerability Study

We studied previously reported vulnerabilities (over past
14 years) to understand the prevalence of different kinds of
vulnerabilities in different DXE interfaces. The left half of
Table V summarizes the two types of interfaces and their con-
tribution to the total interfaces. As mentioned before (§ II-A2),
services are fixed by the UEFI standard. Consequently, any
UEFI-compatible environment has a fixed set of services.
Expectedly, protocols comprise the majority (i.e., 70%) of the
DXE interfaces. We categorized vulnerabilities into memory
corruption (e.g., buffer overflow, use-after-free, etc.) or other
(e.g., incorrect configuration). The right half of Table V
summarizes vulnerabilities and the interfaces responsible for

Listing 7 Example demonstrating Protocol Registration.
1 1gEfiPxeBaseCodeProtocolGuid = \
2 { \
3 0x03c4e603, 0xac28, 0x11d3, \
4 {0x9a, 0x2d, 0x00, 0x90, \
5 0x27, 0x3f, 0xc1, 0x4d } \
6 }
7 3 EFI_STATUS EfiPxeBcUdpRead
8 (
9 ...

10 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort,
11 IN OUT UINTN *BufferSize, IN VOID *BufferPtr
12 ...
13 ) { ... }
14 EFI_PXE_BASE_CODE_PROTOCOL
15 2 gPxeBcProtocolTemplate = {
16 ...
17 EfiPxeBcMtftp,
18 EfiPxeBcUdpWrite,
19 3 EfiPxeBcUdpRead,
20 ...
21 NULL};
22 ...
23 gBS->InstallMultipleProtocolInterfaces (
24 ...
25 1 &gEfiPxeBaseCodeProtocolGuid,
26 2 &gPxeBcProtocolTemplate,
27 NULL);
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#define EFI_USB_IO_PROTOCOL_GUID \
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 0x2B2F68D6... \
}

struct EFI_USB_IO_PROTOCOL {
...
 EFI_USB_IO_CONTROL_TRANSFER 
    UsbControlTransfer;
...
}

Fig. 6: USB Device Model Overview

them. We are able to conclude that 71% of the vulnerabilities
are in the protocols and 49% of those vulnerabilities are due
memory corruption bugs.

C. Driver Customization Example

The Figure 6 shows the high-level layered organization
of the USB device driver. Each layer interacts with the
other layer through a protocol. The top device driver layer
interacts with the bus driver through EFI_USB_IO_PROTOCOL.
Similarly, the controller interacts with the device through
EFI_USB2_HC_PROTOCOL. The use of such well-defined inter-
faces allows vendors of a new device to easily customize the
USB driver by exposing corresponding protocols.

As indicated in Figure 6, EFI_USB_IO_PROTOCOL_GUID and
struct EFI_USB_IO_PROTOCOL represents the GUID and inter-
face for EFI_USB_IO_PROTOCOL protocol, respectively. There
are several predefined protocols with fixed GUIDs. Vendors
can customize the standard protocols and define custom pro-
tocols with new GUIDs, e.g., EFI_USB_IO_PROTOCOL_GUID is
the fixed GUID for the USB IO protocol.

D. FIRNESS Implementation Example

Listing 11 shows the snippet for the call site of the
SetPackets function in Listing 1. The snippet shows the
argument information for Arg_12 (Argument 12), the Packet

argument. arg_dir = IN indicates the argument is in-
put. arg_type indicates the data type of the argument.

Listing 8 Examples of using DXE Services.
1 EFI_STATUS EFIAPI
2 EntryPoint (IN EFI_HANDLE IH,
3 IN EFI_SYSTEM_TABLE* ST )
4 {
5 EFI_STATUS St;
6 EFI_PHYSICAL_ADDRESS BufPtr;
7 void *data;
8 ...
9 St = ST->BootServices->AllocatePages(...,

10 &BufPtr) ®;
11 ...
12 St = ST->RuntimeServices->GetVariable(...,
13 &data) ®;
14 }

Listing 9 Path Constraint Example for Error Handling Code
EFIAPI
EfiPxeBcUdpRead (
IN EFI_PXE_BASE_CODE_PROTOCOL *This,
IN UINT16 OpFlags,
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort,
IN UINTN *HeaderSize,
IN VOID *HeaderPtr,
IN OUT UINTN *BufferSize,
IN VOID *BufferPtr
)

{
...
if (This == NULL) return EFI_INVALID_PARAMETER;

Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
...
if (((

(OpFlags & PXE_BASE_CODE_ANY_DEST_PORT) == 0)
&& (DestPort == NULL)) ... )

return EFI_INVALID_PARAMETER;

if (((HeaderSize != NULL) && (*HeaderSize == 0))
((HeaderSize != NULL) && (HeaderPtr == NULL)))

return EFI_INVALID_PARAMETER;

if ((BufferSize == NULL) (BufferPtr == NULL))
return EFI_INVALID_PARAMETER;

if (!Mode->Started) return EFI_NOT_STARTED;
...

}
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Fig. 7: CDF of Accuracy vs. % of Interface Functions

This might be different from the declared type of the cor-
responding parameter (i.e., param_type) because (as ex-
plained in § IV) the parameter can be a generic type (i.e.,
void*). The potential_outputs field indicates the pos-
sible definitions of the argument that can reach the call
site. In the target example (i.e., Listing 1), there is only
one definition of the argument (i.e., Packet) that can reach
the call site. Hence, potential_outputs field contains
only one entry, i.e., GetInfo. However, as illustrated in
Listing 12, if there were multiple definitions that can reach
the call site, then potential_outputs field will contain
["ReadPacket", "GetInfo"]. The other fields (e.g.,
usage, variable, Include) will be used by the harness
generation to emit the target harness in C.

E. Design Rationale

Our goal is to automatically generate fuzzing harness in
source code (i.e., C code) form so that the harness can be
generated once for a given protocol and compiled to different
architectures (e.g., ARM). This also allows the generated har-
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Listing 10 Snippet of Generated Harness for SetPackets in Listing 1
EFI_STATUS
EFIAPI
FuzzSetPackets(

IN INPUT_BUFFER *Input,
IN EFI_SYSTEM_TABLE *SystemTable,
IN EFI_HANDLE *ImageHandle

...
EFI_PXE_BASE_CODE_PROTOCOL * ProtocolVariable = NULL;
Status = gBS->LocateProtocol(&gEfiPxeBaseCodeProtocolGuid, NULL, (VOID *)&ProtocolVariable);
/// Input Variable Initialization
BOOLEAN * SetPackets_Arg_1 = AllocateZeroPool(sizeof(BOOLEAN));
EFI_PXE_BASE_CODE_PACKET * SetPackets_Arg_12 = AllocateZeroPool(sizeof(EFI_PXE_BASE_CODE_PACKET));
// Fuzzable Variable Initialization
ReadBytes(Input, sizeof(SetPackets_Arg_1), (VOID *)SetPackets_Arg_1);
// Generator Function Initialization
EFI_MTFTP6_PROTOCOL * ProtocolVariable2 = NULL;
Status = gBS->LocateProtocol(&gEfiMtftp6ProtocolGuid, NULL, (VOID *)&ProtocolVariable2);
EFI_MTFTP6_OPTION * EFI_MTFTP6_PROTOCOL_GetInfo_Arg_5 = AllocateZeroPool(sizeof(EFI_MTFTP6_OPTION));
// Generator Struct Variable Initialization
ReadBytes(Input, sizeof(EFI_MTFTP6_PROTOCOL_GetInfo_Arg_5->OptionStr),

(VOID *)(EFI_MTFTP6_PROTOCOL_GetInfo_Arg_5->OptionStr));
ReadBytes(Input, sizeof(EFI_MTFTP6_PROTOCOL_GetInfo_Arg_5->ValueStr),

(VOID *)(EFI_MTFTP6_PROTOCOL_GetInfo_Arg_5->ValueStr));
Status = ProtocolVariable2->GetInfo(

...
EFI_MTFTP6_PROTOCOL_GetInfo_Arg_5,
EFI_MTFTP6_PROTOCOL_GetInfo_Arg_6,
(EFI_MTFTP6_PACKET **)&SetPackets_Arg_12

);
Status = ProtocolVariable->SetPackets(

ProtocolVariable,
SetPackets_Arg_1,
...
SetPackets_Arg_12

);

Listing 11 FIRNESS analysis results for SetPackets function
in Listing 1.
[
{
"Arguments": {
...
"Arg_12": {

"arg_dir": "IN",
"arg_type": "EFI_PXE_BASE_CODE_PACKET",
"param_type": "EFI_PXE_BASE_CODE_PACKET",
"potential_outputs": ["GetInfo"],
"usage": "&Packet",
"variable": "Packet"

}
},
"Function": "SetPackets",
"Include": [ ],
"ReturnType": "VOID",
"Service": "protocol"
}
]

Listing 12 Example with branching
if(input == 1){

ReadPacket(..., &Packet);
} else {

Mtftp6Prot->GetInfo(
...,
(VOID **)&Packet
);

}

Listing 13 Type Resolution for Generator Function Resolution
typedef CHAR16 *EFI_STRING;

// Potential Generator Function
EFI_STATUS
EFIAPI
HttpBootFormExtractConfig (
IN CONST EFI_HII_CONFIG_ACCESS_PROTOCOL *This,
IN CONST EFI_STRING Request,
OUT EFI_STRING *Progress,
OUT EFI_STRING *Results
);

// Target Function
EFI_STATUS
EFIAPI
HiiStringToImage (
IN CONST EFI_HII_FONT_PROTOCOL *This,
IN EFI_HII_OUT_FLAGS Flags,
IN CONST EFI_STRING String,
IN CONST EFI_FONT_DISPLAY_INFO *StringInfo,
IN OUT EFI_IMAGE_OUTPUT **Blt,
IN UINTN BltX,
IN UINTN BltY,
OUT EFI_HII_ROW_INFO **RowInfoArray,
OUT UINTN *RowInfoArraySize,
OUT UINTN *ColumnInfoArray
);

ness to be shared across multiple vendors working on different
platforms and architectures. This requirement of source-level
harnesses guided most of our design decisions, e.g., using L-
value expressions and ignoring certain definitions (§ V-B3).
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We acknowledge that performing our analysis on simpler
representations, such as LLVM IR, could potentially enable
us to perform more sophisticated analyses. However, using
such low-level representations makes it very challenging to
emit compilable C source-level harnesses because of the lack
of appropriate type names (i.e., pre typedef expansion) and
other source-level artifacts.

F. Harness Generation Example

The goal is to create well-formed values of each argument
from input and invoke the target function. For each argument,
we identify the final argument type (i.e., majority type as
explained in § V-B5b) and determine whether it is scalar
or not. If scalar, we declare a variable of the corresponding
type and read the corresponding number of bytes from the
input using ReadBytes. For struct types, if it is creatable, we
create a variable of the struct type and initialize the contents
with input using ReadBytes. If a struct has generators, we
invoke the generator by creating arguments of appropriate
type. When there are multiple ways to create an argument, we
select one based on the value from the input. For instance,
consider that a struct type t is creatable and also has 3
generators, which results in a total of 4 ways to create a value
of t, i.e., 3 generators and 1 from input data. We create a
switch case statement with 4 cases (i.e., case 0, case 1, ...,
case 3) with three generators under three cases and reading
from input (i.e., ReadBytes) under one case. We read a byte
from input and jump to one of the cases by using the byte
in the switch condition, i.e., switch(input_byte\%4). Our
method, in addition to being random selection, also enables
deterministic testing, i.e., a given stream of input bytes always
results in a specific execution path. The Listing 10 shows the
snippet of the C harness generated by our technique.

G. Common Generator Function Failure

The most common failure when capturing generator func-
tions is when the type of interest gets resolved to a type that
doesn’t require a generator function (e.g., scalar). An example
of this can be seen in Listing 13, where the type of interest is
EFI_STRING that can be resolved to CHAR16*, yet it is a unique
type that has 15 generator functions that don’t get captured.
The current analysis resolves all types to their root type to
eliminate ambiguity with type classification, the only exception
is when the underlying type is void*.

H. Path Constraint Example

Some of the protocols take scalar values that are actually
constants, but instead of passing in the constants there are
checks at the beginning of each function to verify they are the
correct value. These constants aren’t captured by our analysis,
and therefore, would limit the coverage if the checks can’t be
passed within the 24hr test period. For example, in one of the
PXE boot protocol functions, EfiPxeBcUdpRead, a number of
checks are performed at the beginning of the function that can’t
be passed without the private data structure for that protocol to
be modified or the correct contant to be passed in to compare
against the macro, Listing 9.

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

The artifacts are contained inside several Github reposito-
ries, which are submodules of the main project, linked below.
Each of the submodules contains an explanation of what is
within it to provide better context, but the main repository
is capable of building the necessary docker container to run
experiments within. The artifacts are also located in permanent
storage at Zenodo, also linked below.

1) How to access: All of the source-code for FUZZUER
can be found at permenant storage https://doi.org/10.5281/
zenodo.14257287 or at the Github Repository https://github.
com/BreakingBoot/FuzzUEr.git.

2) Hardware dependencies: None.

3) Software dependencies: Requires docker.

4) Benchmarks: None.

B. Artifact Installation & Configuration

After downloading the files from Github as described
above, you can then follow the instructions inside the
README inside the main repository. If using Zenodo, you
will need to uncompress the artifacts before following the
README.

C. Experiment Workflow

N/A

D. Major Claims

N/A

E. Evaluation

N/A

F. Customization

N/A

G. Notes

N/A
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